ă.	_		_		_
١.	5	1	ᆽ	1	"
,	. 1	/a. 15	.)	1	v

(Pages: 3)

	1100 2 112	100	and the same	2	100	1 100	10
Nam	•	The state of		New Y			100
TAGIII	C						
2004 1000		A	1977 1 1 1 1 1	100000000000000000000000000000000000000			

Reg. No....

THIRD SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2013

(U.G.—CCSS)

(Complementary Course)

MM 3C 03-MATHEMATICS

ne: Three Hours

Maximum: 30 Weightage

I. Objective Type Questions: Answer all questions:

Each question of weightage 14.

1 Check for exactness:

Check for exactness:
$$(x^3 + 3xy^2) dx + (3x^2y + y^3) dy = 0.$$

- 2 Curves that intersect a given curve at right angels are called —
- 3 Solve $y' = \log x$.
- 4 When is a square matrix A said to be non-singular?
- 5 Find the characteristic roots of $\begin{bmatrix} 1 & 3 \\ 10 & 2 \end{bmatrix}$
- 6 If '2' is an eigenvalue of a square matrix A, give one root of A^T.
- 7 Define a solenoidal vector
- 8 When are two vectors \vec{a} and \vec{b} said to be orthogonal?
- 9 What is the divergence of $\vec{a} = [x^2, y^2, z^2]$?
- 10 Find a unit normal vector to the surface $S: x^2 + y^2 + z^2 = a^2$.
- 11 Give the parametric representation of the plane 3x + 2y + z = 6.
- 12 If $\vec{F} = \operatorname{grad} f$, $f = x^2 + y^2 + 2z^2$, find $\int_C \vec{F} \operatorname{od} \vec{r}$ where C has initial point A(0,0,0) and terminal point B:(2,2,2).

The state of the s

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Short Answer Type Questions: Answer all questions.
Each question of weightage 1.

13 Find the rank of the following matrix

$$A = \begin{bmatrix} 4 & 7 & 6 \\ 8 & 14 & 12 \\ 1 & 1 & 1 \end{bmatrix}.$$

- 14 State Cayley Hamilton Theorem.
- 15 Solve $(1+x^2)$ $\frac{dy}{dx} = 1 + y^2$, y(0) = 1.
- 16 Find an integrating factor for $2x \tan y \, dx + \sec^2 y \, dy = 0$.
- 17 Find the work done by $\vec{p} = [2, 6, 6]$ if it displaces a body from A: (3, 4, 0) to B: (5, 8, 0).
- 18 Prove that $\operatorname{div}[\operatorname{grad} f] = \nabla^2 f$.
- 19 Find the tangential and normal accelerations of $\vec{r}(t) = [b \cos t, b \sin t, c]$.
- 20 Check for path independence: $\sinh xz (zdx xzdz)$.
- 21 Use Green's Theorem to evaluate $\int_{C}^{\Phi} \bar{F} \text{ od } \vec{r}$, where $\bar{F} = \text{grad } (\sin x \cos y)$ and C is the ellipse $25x^2 + 9y^2 = 225$.

 $(9 \times 1 = 9 \text{ weightage})$

- III. Short Essay or Paragraph Questions: Answer any five questions: Each question of weightage 2.
 - 22 Solve $2xyy' = y^2 x^2$.
 - 23 Find the rank by reducing to normal form:

$$\mathbf{A} = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12 \end{bmatrix}.$$

24 Find the eigenvalues of $A = \begin{bmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$.

- 25 Find the directional derivative of $f = (x^2 + y^2 + z^2)^{-1/2}$ at (3, 0, 4) along $\vec{a} = [1, 1, 1]$.
- 26 Find the length of the hypocycloid $\bar{r}(t) = a \cos^3 t \,\hat{i} + a \sin^3 t \,\hat{j}$.
- 27 Test for exactness and hence evaluate:

$$\int_{(3, \frac{3}{2})}^{(4, \frac{1}{2})} 2x \sin \pi y \, dx + \pi x^2 \cos \pi y \, dy.$$

Evaluate using the Gauss Divergence Theorem : $\iint_{S} \vec{F} \cdot \vec{n} \, dA, \ \vec{F} = \left[x^{3}, y^{3}, z^{3}\right] \text{ and } S \text{ is the}$ surface of the sphere $x^{2} + y^{2} + z^{2} = 9$.

 $(5 \times 2 = 10 \text{ weightage})$

- IV. Essay Questions: Answer any two questions. Each question of weightage 4.
 - 29 Find the Orthogonal Trajectories of $y = c\sqrt{x}$.
 - 30 Use Cayley Hamilton Theorem to find A^3 and A^4 if $A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & 1 & 1 \\ 2 & 3 & 1 \end{bmatrix}$.
 - 31 Verify Stokes' Theorem for $\vec{F} = [y, z, x]$ and S is the portion of the paraboloid $z = 1 (x^2 + y^2)$, $z \ge 0$.

 $(2 \times 4 = 8 \text{ weightage})$