Name			
Name	******	****	*****
Reg. No			

FRST SEMESTER B.Sc DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2014

(U.G.-CCSS)

Complementary Course-Mathematics

MM 1C 01-MATHEMATICS

Time : Three Hours

Maximum: 30 Weightage

Part A (Objective Type Questions)

Answer all twelve questions.

Each bunch of four questions carries 1 weightage.

1. Find
$$\lim_{x \to -2} 1 \sqrt{4 x^2 - 3}$$
.

2. The functions
$$f(x) = \frac{\cos x}{x}$$
 is not continuous at $x = \frac{\cos x}{x}$

3. Find
$$\frac{dr}{d\theta} \Big|_{\theta=0} if \quad r = \frac{2}{\sqrt{4-\theta}}$$
.

4. The formula for finding the sum of the cubes of first n natural numbers is ———.

 $(4 \times \frac{1}{4} = 1)$ weightag

5. State mean value theorem.

6. Express
$$\lim_{|p|\to 0} \sum_{k=1}^n \sec(c_k) \Delta x_k$$
 as an integral if p denotes a partition of the interval $\left[\frac{-\pi}{4}, 0\right]$.

7. Evaluate
$$\int_{\sqrt{2}}^{\sqrt{18}} \sqrt{2} dr$$
.

8. If
$$\int_{1}^{2} f(x) dx = 5$$
 then $\int_{2}^{1} f(t) dt =$

 $(4 \times \frac{1}{4} = 1)$ weights

Find the average value of
$$f(t) = \sin t$$
 on $[0, 2\pi]$.

10. The critical points of
$$f(x) = x^3 - 12x + 4$$
 are

Use L' Hopital's rule find
$$\lim_{t\to 0} \frac{\text{Lt } \sin 5t}{t}$$
.

 $(4 \times \frac{1}{4} = 1 \text{ weight}$

Part B (Short Answer Type Questions)

Answer all nine questions. Each question carries 1 weightage.

$$\sqrt{5-x^2}$$
 for $-1 \le x \le 1$, find $x \to 0$

14. Suppose Lt
$$x \to 2$$
 $(x) = 4$, $x \to 2$ $f(x) = 4$ $f(x) = 4$.

15. Find the slope and equation of the tangent at the point $(4, 2)$ to the curve $f(x) = \sqrt{x}$.

15. Find the slope and equation of the function
$$s = \frac{t^2 + 5t + 1}{t^2}$$
.

16. Find the 1st and second derivatives of the function $s = \frac{t^2 + 5t + 1}{t^2}$.

17. Find the linearization of
$$f(x) = x^3 - x$$
 at $x = 1$.

18. Evaluate
$$\frac{d}{dx} \int_{1}^{\sin x} 3t^2 dt$$
.

19. Find the length of the curve
$$x = \frac{y^3}{3} + \frac{1}{4y}$$
 from $y = 1$ to $y = 3$.

20. Find the area of the surface generated by revolving the curve $y=2\sqrt{x}$, $1 \le x \le 2$ about the r-axis.

21. Find the points at which the curve $y = x^4 - 2x^2 + 2$ has horizontal tangents.

 $(9 \times 1 = 9 \text{ weightage})$

Part C (Short Essay Questions)

Answer any five questions. Each question carries 2 weightage.

22. If
$$f(x) = \sqrt{19-x}$$
, $L = 3$, $x_0 = 10$, $\epsilon = 1$, find an open interval containing x_0 and a value of $\delta > 0$ such that $0 < |x-x_0| < \delta$ implies $|f(x)-L| < \epsilon$.

23. The curves
$$y = x^2 + ax + b$$
 and $y = cx - x^2$ have a common tangent line at the point $(1, 0)$. Find a, b and c .

24. Using Sandwich theorem find the asymptotes of the curve
$$y = 2 + \frac{\sin x}{x}$$
.

25. Find the area of the region between the x-axis and the curve
$$f(x) = x^3 - x^2 - 2x$$
; $-1 \le x \le 2$.

26. Use max-min inequality find upper and lower bounds for the value of
$$\int_0^1 \frac{1}{1+x^2} dx$$
.

Find the volume of the solid generated by revolving the region bounded by $y = \sqrt{x}$ and the lines D 78712

y=1, x=4 about the line y=1.

Find the absolute maximum and minimum values of $f(x) = x^{\frac{1}{2}}$ in [-1, 8].

 $(5 \times 2 = 10 \text{ weightage})$

Part D (Essay Questions)

Answer any two questions. Each question carries 4 weightage.

Graph the function:
$$f(x) = \begin{cases} 1, & x \le -1 \\ -x, & -1 < x < 0 \\ 1, & x = 0 \\ -x, & 0 < x < 1 \\ 1, & x \ge 1 \end{cases}$$

Then write the one sided limits, limits, one-sided continuity and continuity of f at each of the points x=-1, 0 and 1. Are any of the discontinuities removable? Explain.

Find y' and y'' and graph the function $y = x^{\frac{1}{2}} - 5x^{\frac{1}{2}}$. Include the coordinates of any local extreme points and inflection points.

Find the area of the surface generated by revolving the curve $y=2\sqrt{x}$, $1 \le x \le 2$ about the x-axis.

 $(2 \times 4 = 8 \text{ weightage})$