٠	33	9	0	c
	๋๋๋๋๋๋๋๋๋๋๋	O)	Z	v

(Pages : 4)

Name.....

Reg. No.....

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2017

(CUCBCSS-UG)

Complementary Course

MAT 1C 01—MATHEMATICS

ime: Three Hours

Maximum: 80 Mai

Part A (Objective Type)

Answer all twelve questions.

- 1. At what points are function $f(x) = \frac{1}{(x+2)^2} + 4$ continuous?
- 2. Define critical point of a function.
- 3. Suppose $\lim_{x\to c} f(x) = 5$ and $\lim_{x\to c} g(x) = -2$. Find $\lim_{x\to c} f(x)g(x)$.
- 4. Find the norm of the partition [0, 1.2, 1.5, 2.3, 2.6, 3].
- 5. Find absolute minima of $y = x^2$ on (0, 2].
- 6. Find the interval in which $y = x^3$ is concave up.

7.
$$\frac{d}{dx}\int_a^x f(t) dt = ---$$

- 8. Find dy if $y = x^5 + 37x$.
- 9. Define average value of a function f on [a, b].
- 10. Find $\lim_{x\to\infty}\frac{\pi\sqrt{3}}{x^2}$.
- 11. Define horizontal asymptote of the graph of a function.
- 12. Find $\lim_{x\to 2} \frac{3-x}{3+x}$.

Part B (Short Answer Type)

Answer any nine questions.

- 13. If $2-x^2 \le g(x) \le 2\cos x$ for all x, find $\lim_{x\to 0} g(x)$.
- 14. If $\lim_{x\to 4} \frac{f(x)-5}{x-2} = 1$, find $\lim_{x\to 4} f(x)$.
- 15. Find the derivative of $y = \sqrt{x}$ for x > 0. Find the tangent line to the curve $y = \sqrt{x}$ at x = 4.
- 16. Area A of a circle is related to its diameter by the equation $A = \frac{\pi}{4} D^2$. How fast is the area changing with respect to the diameter when the diameter is 10 m?
- 17. Find absolute extreme values of $g(t) = 8t t^4$ on [-2, 1].
- 18. Show that $\lim_{x\to\infty}\frac{1}{x}=0$.
- 19. The radius r of a circle increases from $r_0 = 10 \ m$ to $10.1 \ m$. Estimate the increase in the circle's area A by calculating dA. Compare this with true change $\triangle A$.
- 20. Find a lower bound for the value of $\int_0^1 \cos x \, dx$ using the inequality $\cos x \ge 1 x^2/2$.
- 21. Use Max-Min inequality to find upper and lower bounds for the value of $\int_0^1 \frac{1}{1+x^2} dx$.
- 22. Find the area of the region between $y = 4 x^2$, $0 \le x \le 3$ and the x-axis.
- 23. Find the function with derivative f'(x) = 2x 1 passing through the point P(0,0).
- 24. Find $\frac{d}{dx} \int_0^{t^4} \sqrt{u} \ du$.

Part C (Short Essay Type)

Answer any six questions.

- 25. Find the slope of the curve y = 1/x at x = a. Where does the slope equal -1/4? What happens to the tangent to the curve at the point (a, 1/a) as a changes?
- 26. Show that functions with zero derivatives are constant.
- 27. Find the asymptotes of the graph of $f(x) = \frac{-8}{x^2 4}$.
- 28. Find $\lim_{x\to 0} + \frac{\sqrt{h^2 + 4h + 5} \sqrt{5}}{h}$.
- 29. Show that functions with the same derivative differ by a constant.
- 30. Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$ about the x-axis.
- 31. Express the solution of the initial value problem $\frac{ds}{dt} = f(t)$, $s(t_0) = s_0$ in terms of integral.
- 32. Show that if f is continuous on [a, b], $a \neq b$ and if $\int_a^b f(x) dx = 0$, then f(x) = 0 at least once in [a, b].
- 33. Show that if f has a derivative at x = a then f is continuous at a.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any two questions.

- 34. Find the intervals on which $g(x) = -x^3 + 12x + 5$, $-3 \le x \le 3$ is increasing and decreasing. What are the critical points? When does the function assume extreme values and what are these values?
- 35. Find the volume of the solid generated by revolving the regions bounded by the curve $x = \sqrt{5}y^3$, x = 0, y = -1, y = 1 about x-axis.

36. Let
$$f(x) = \begin{cases} 3-x, & x < 2; \\ 2, & x = 2; \\ \frac{x}{2} + 1, & x > 2 \end{cases}$$

- (a) Find $\lim_{x\to 2^+} f(x)$ and $\lim_{x\to 2^-} f(x)$. and f(2).
- (b) Does $\lim_{x\to 2} f(x)$ exist? If so, what is it? If not, why not?
- (c) Find $\lim_{x\to -2^+} f(x)$ and $\lim_{x\to -2^-} f(x)$.
- (d) Does $\lim_{x\to -2} f(x)$ exist? If so, what is it? If not, why not?

 $(2 \times 10 = 20 \text{ marks})$