NT			
Name	 		
		•••••	•••••

Reg. No....

FIRST SEMESTER B.Sc. DEGREE EXAMINATION, NOVEMBER 2018

(CUCBCSS—UG)

Complementary Course-Mathematics

MAT 1C 01-MATHEMATICS

Time: Three Hours

Maximum: 80 Marks

Part A

Answer all twelve questions. Each question carries 1 mark.

- 1. Suppose $\lim_{x\to c} f(x) = 5$ and $\lim_{x\to c} g(x) = -2$, find $\lim_{x\to c} 2f(x)g(x)$.
- 2. Find dy if $y = \cos 3x + x^4$.
- 3. Write the sum without sigma notation: $\sum_{k=1}^{1} 0k^2 + 3k.$
- 4. Find the interval in which the function $y = x^3$ is concave up.
- 5. Find absolute extrema of $y = x^2$ on (0, 2).
- 6. Find $\lim_{x \to -1} \frac{-1}{(1-x)^3}$.
- 7. Define vertical asymptote.
- $8. \quad \frac{d}{dx} \int_{-\pi}^{x} \cos t dt = \dots$
- 9. Express the limit $\lim_{\|P\| \to 0} \sum_{k=1}^{n} \frac{1}{1-c_k} \Delta x_k$ where P is the partition of [2, 3] as an integral.
- 10. State Mean Value Theorem.

Turn over

- 11. Find all possible functions with derivative $y' = x^3$.
- 12. Shortest interval length of a partition is called ———.

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

13. Show that if
$$\lim_{x\to c} |f(x)| = 0$$
, then $\lim_{x\to c} f(x) = 0$.

14. If
$$\sqrt{5-2x^2} \le f(x) \le \sqrt{5-x^2}$$
 for $-1 \le x \le 1$, find $\lim_{x \to 0} f(x)$.

15. If
$$\lim_{x \to -2} \frac{f(x)}{x^2} = 1$$
, find $\lim_{x \to -2} \frac{f(x)}{x}$.

- 16. Find the slope of the curve y = 1/x at x = a.
- 17. Differentiate $f(x) = \frac{x}{x-1}$. Where does the curve y = f(x) have slope -1?
- 18. Show that y = -x is not differentiable at x = 0.
- 19. Find the equation for the tangent to the curve $y = x + \frac{2}{x}$ at (1, 3).
- 20. Find absolute extrema of $y = x^{2/3}$ on [-2, 3].
- 21. Find the function whose derivative is $\sin x$ and whose graph passes through the point (0, 2).
- 22. Show that $\lim_{x\to\infty} \frac{1}{x} = 0$.
- 23. Show that if f is continuous on [a, b], $a \neq b$ and if $\int_a^b f(x) dx = 0$, then f(x) = 0 at least once in [a, b].
- 24. Express the solution of the initial value problem $\frac{dy}{dx} = \tan x$, y(1) = 5 as an integral.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Type)

Answer any six questions. Each question carries 5 marks.

- 25. Show that the line y = mx + b is its own tangent at any point $(x_0, mx_0 + b)$.
- 26. When does a function not have a derivative at a point? Explain.
- 27. Show that if f has a derivative at x = c, then f is continuous at x = c.
- 28. Show that functions with same derivatives differ by a constant.
- 29. Find the asymptotes of the curve $y = \frac{x+3}{x+2}$.
- 30. Find $\lim_{x \to \infty} \frac{2\sqrt{x} + x^{-1}}{3x 7}$.
- 31. Find the area of the surface generated by revolving the curve $y = 2\sqrt{x}$, $1 \le x \le 2$ about the x-axis.
- 32. Find $\lim_{x \to 0^+} \frac{\sqrt{h^2 + 4h + 5} \sqrt{5}}{h}$.
- 33. Define f(3) in a way that extends $f(x) = \frac{x^2 9}{x 3}$ to be continuous at x = 3.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any two questions. Each question carries 10 marks.

- 34. Find the critical points of $f(x) = x^{1/3}(x-4)$. Identify the intervals on which f is increasing and decreasing. Find the function's local and absolute extreme values.
- 35. Find the volume of the solid generated by revolving the regions bounded by the curve $x = \sqrt{5} y^2$, x = 0, y = -1, y = 1 about x-axis.

Turn over

36. Let
$$f(x) = \begin{cases} \sqrt{1-x^2}, & 0 \le x < 1; \\ 1, & 1 \le x < 2; \\ 2, & x = 2. \end{cases}$$

- (a) What are the domain and range of f?
- (b) At what points c, if any, does $\lim_{x\to c} f(x)$ exist?
- (c) At what points does only the left-hand limit exists?
- (d) At what points does only the right-hand limit exists?

 $(2 \times 10 = 20 \text{ marks})$