SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2017

(CUCBCSS—UG)

Complementary Course

MAT 2C 02-MATHEMATICS

Time: Three Hours

Maximum: 80 Marks

Part A (Objective Type)

Answer all questions.

- 1. Find the derivative of y with respect x, where $y = \ln (\sinh x)$.
- 2. Evaluate $\int_{5}^{2} \frac{dx}{1-x^{2}}$.
- 3. Find the value of $\int \frac{d u}{\sqrt{a^2 + u^2}}$ when a > 0.
- 4. Write the formula for the length of the curve x = g(y), $c \le y \le d$.
- 5. Write the limit comparison test for improper integrals.
- 6. Show that $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges.
- 7. Find the Maclaurin series for the function e^{-x} .
- 8. Replace the following Cartesian equation by equivalent polar equation.

$$xy = 2$$
.

- 9. Find an equation for the hyperbola with $\frac{3}{2}$ eccentricity and directrix x = 4.
- 10. Evaluate $\lim_{(x,y\to(0,1))} \frac{x-xy+3}{x^2 y+5 xy-y^3}$.
- 11. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$, where $f(x, y) = x^2 xy + y^2$.
- 12. If w = f(x, y, z), x = g(r, s), y = h(r, s) and z = k(r, s) write $\frac{\partial w}{\partial s}$.

 $(12 \times 1 = 12 \text{ marks})$

Part B (Short Answer Type)

Answer any nine questions.

13. Find the volume of the solid generated byrevolving the region bounded by the lines

$$y = 2$$
, $x = 0$ and the curve $y = 2\sqrt{x}$.

- 14. Find the length of the curve $y = \frac{y^3}{3} + \frac{1}{4y}$ from y = 1 to y = 3.
- 15. Find the area of the surface generated by revolving the curve $x = \frac{y^3}{3}$, $0 \le y \le 1$ about the y-axis.
- 16. Evaluate $\int \tanh \frac{x}{7} dx$.
- 17. Investigate the convergence of $\int_0^{\frac{\pi}{2}} \tan \theta d\theta$.
- 18. Find the sum of the series $\sum_{n=0}^{\infty} \frac{(-1)^n}{4n}$
- 19. Find the Maclaurin series for the function $\frac{1}{1-x}$.
- 20. Find the polar equation for the circle $x^2 + (y-3)^2 = 19$.
- 21. Find the directrix of the parabola $r = \frac{25}{10^{-5} \cos \theta}$.
- 22. What point satisfies the equations r = 2, $\theta = \frac{\pi}{4}$?
- 23. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ where $f(x, y) = \frac{1}{x + y}$.
- 24. State chain rule for two independent variables and three intermediate variables.

Part C (Short Essays)

Answer any six questions.

- 25. Find the volume of the solid generated by revolving the region bounded by the Curve $x = \frac{\sqrt{2y}}{y^2 + 1}$ and the lines x = 0 and y = 1.
- 26. Find the length of the curve $y = \frac{4\sqrt{2}}{3}x^{\frac{3}{2}} 1$, $0 \le x \le 1$.
- 27. Evaluate $\int_0^{\ln 2} 4e^{-\theta} \sinh \theta \ d\theta$.
- 28. Evaluate $\int_{-\infty}^{\infty} \frac{dx}{1+x^2}.$
- 29. Find the sum of the series $\sum_{n=1}^{\infty} \frac{6}{(2n-1)(2n+1)}$
- 30. (a) Graph the curve $r = 1 \cos \theta$.
 - (b) Show that the point $\left(2, \frac{\pi}{2}\right)$ lie on the curve $r = 2 \cos 2\theta$.
- 31. Find the points of the intersection of the curves $r^2 = 4\cos\theta$ and $r = 1 \cos\theta$.
- 32. Find the linearization of $f(x, y) = x^2 xy + \frac{1}{2}y^2 + 3$.
- 33. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s if $= x^2 + y^2 x = r s$, y = r + s.

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type)

Answer any two questions.

34. (a) Show that if u is a differentiable function of x whose values are greaterthan 1, then:

$$\frac{d}{dx}\left(\cosh^{-1}u\right) = \frac{1}{\sqrt{u^2 - 1}}\frac{du}{dx}.$$

- (b) Evaluate $\int_2^\infty \frac{x+3}{(x-1)(x^2+1)} dx.$
- 35. (a) Find all the second order partial derivatives of $f(x, y) = x^2 y + \cos y + y \sin x$.
 - (b) Draw the tree diagrams and chain rules for the derivatives $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$ for

$$z = f(x, y), x = g(t, s), y = h(t, s).$$

- 36. (a) Find a polar equation of the conic with $=\frac{1}{5}$, one focus at origin and directrix y=-10 corresponding to that focus.
 - (b) Sketch the circle $r = 2 a \sin \theta$. Give polar co-ordinates for the centers and identify the radius.

$$(2 \times 10 = 20 \text{ marks})$$