-	4	4	4	4
	4	1	4	4
- 4	I	1	ı	ᄑ

P	ages	•	3)
' -	4500	•	•

NT		
Name	 	

TD	NT.			
Reg.	No	•••••	 *****	******

THIRD SEMESTER B.Sc. DEGREE (SUPPLEMENTARY) EXAMINATION, NOVEMBER 2016

(UG-CCSS)

Complementary Course

MM 3C 03—MATHEMATICS

ime: Three Hours

Maximum: 30 Weightage

Part A

Answer all questions.

Each question carries a weightage of 1/4.

- 1. An additional solution of a differential equation that cannot be obtained from the general solution is called ————.
- 2. Solution of the initial value problem $y' = \frac{-y}{x}$; y(1) = 1 is:
 - (a) $x^2 + y^2 = 1$.

(b) xy = 1.

(c) $x = e^y$.

- (d) $v = e^x$.
- 3. A family of curves such that each member of this family cuts all the curves of another family at right angles is called ———.
- 4. A is an $n \times n$ matrix and the rank is r. Then A is non-singular if:
 - (a) n=r.

(b) n < r.

(c) n > r.

- (d) None of these.
- 5. A system of n non-homogeneous equations in n unknown has a unique solution provided
 - (a) |A| = 0.

(b) $|A| \neq 0$.

(c) |A| > 0.

- (d) None of these.
- 6. The characteristic equation of a unit matrix of order 3 is ———
- 7. State Cayley-Hamilton theorem.
- 8. The work done by a force p = [2, 6, 6] acting on a body, if the body is displaced from A (3, 4, 0) to B (5, 8, 0) is ———.
- 9. The parametric representation of the straight line through A (3, 1, 5) and in the direction of $\bar{b} = [4, 7, -1]$ is ———.

Turn over

- 10. Given $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$. Then the value of div \vec{r} is ______
- 11. State Green's theorem in the plane.
- 12. \overline{F} is a field defined on D and $\overline{F} = \nabla f$, for some scalar function f on D, then f is called ———. $(12 \times \frac{1}{4} = 3 \text{ weightage})$

Part B

Answer all nine questions.

Each question carries 1 weightage.

- 13. Show that $(x^3 + 3xy^2) dx + (3x^2y + y^3) dy = 0$ is exact and hence solve.
- 14. Find the orthogonal trajectory of $y = ce^{-x}$.
- 15. Define Elementary transformations on a matrix.
- 16. Find the rank of $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 4 & 6 & 8 \end{bmatrix}$.
- 17. Find $\overline{p} = [0, 0, p_3]$ such that the resultant of p; $\overline{q} = [4, 0, 8]$; $\overline{u} = [2, -2, 6]$ and $\overline{v} = [-1, 1, 3]$ is parallel to the xy-plane.
- 18. Define linear independence of three vectors. Also verity that [4, 2, 9]; [3, 2, 1]; [-4, 6, 9] are linearly independent.
- 19. Find the length of $r(t) = ti + \cosh t j$ from t = 0 to t = 1.
- 20. Evaluate $\int_{C}^{\overline{F} \cdot d\overline{r}} \text{ where } \overline{F} = [-y, -xy]$ and C is the arc of the circle represented by $\overline{r}(t) = [\cos t, \sin t]$; $0 \le t \le \frac{\pi}{2}$.
- 21. Using Green's theorem evaluate $\oint_C \overline{F} o dr$ where $\overline{F} = \left[3y^2, x y^4\right]$ and C is the square with vertices (1, 1), (-1, 1), (-1, -1) and (1, -1).

 $(9 \times 1 = 9 \text{ weightage})$

Part C

Answer any five questions.

Each question carries 2 weightage.

22. Find the integrating factor and hence solve:

 $2\cosh x\cos y\ dx = \sinh x\sin y\ dz.$

23. Solve $y' + 2y = y^2$.

- 24. Verity Cayley-Hamilton theorem for $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$.
- 25. Find the eigen values and eigen vectors of $A = \begin{bmatrix} 1 & 0 \\ 0 & -3 \end{bmatrix}$.
- 26. Find $\nabla^2 f$ using the formula $\nabla^2 f = \text{div} (\text{grad } f)$ and verify by direct differentiation for $f = \frac{xy}{z}$.
- 27. Verify div $\left(\operatorname{curl} \overline{u}\right) = 0$ if $\overline{u} = \frac{1}{2}\left(x^2 + y^2 + z^2\right)\left(\overline{i} + \overline{j} + \overline{k}\right)$.
- 28. Write the formula for area of a plane region as a line integral over the boundary. Using this evaluate the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

 $(5 \times 2 = 10 \text{ weightage})$

Part D

Answer any two questions.

Each question carries 4 weightage.

- 29. (a) Show that $\overline{F} = (e^x \cos y + yz)\overline{i} + (xz e^x \sin y)\overline{j} + (xy + z)\overline{k}$ is conservative and find the scalar potential for it.
 - (b) Verify Green's theorem for $\overline{F} = (x y)\overline{i} + x\overline{j}$ where R is the region bounded by the unit circle $\overline{r}(t) = \cos t \ \overline{i} + \sin t \ \overline{j}$; $0 \le t \le 2\pi$.
- 30. (a) Find the characteristic roots and vectors of $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$.
 - (b) Using Cayley-Hamilton theorem find the inverse of $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$.
- 31. (a) Solve $y' = (x + y z)^2$.
 - (b) Solve $y' + y \sin x = e^{\cos x}$.

 $(2 \times 4 = 8 \text{ weightage})$