**				*	
Nam	e	*******	••••	••••	••

Reg. No.....

FOURTH SEMESTER B.Sc. DEGREE EXAMINATION, APRIL 2018

(CUCBCSS—UG)

Complementary Course

MAT 4C 04—MATHEMATICS

Time: Three Hours

Maximum: 80 I

Part A (Objective Type)

Answer all questions.

Each question carries 1 mark.

- 1. What do you mean by fundamental period?
- 2. Write the characteristic equation of the differential equation 2y'' + 10y' + 25y = 0.
- 3. Write the 2 dimensional wave equation.
- 4. Give an example of a function which is neither odd nor even.
- 5. State the existence and uniqueness theorem for initial value problem.
- 6. Find the Laplace transform of f'(t).
- 7. Find the Wronskian of $e^{\lambda x}$ and $xe^{\lambda x}$.
- 8. Find $L^{-1}\left(\frac{1}{s/a-1}\right)$.
- 9. Find L $(t + e^t)$.
- 10. State the second shifting theorem of Laplace transform.
- 11. Write the error estimate for Simpson's rule.
- 12. Write the formula for Runge-Kutta method.

 $(12 \times 1 = 12 \text{ m})$

Part B (Short Answer Type)

Answer any **nine** questions. Each question carries 2 marks.

- 13. Find the Fourier cosine series of $f(x) = \pi x$, $0 < x < \pi$.
- 14. Show that $u = e^{-w^2c^2t} \sin wx$ is a solution of heat equation.
- 15. Apply Picard's iteration to solve $y' = y x^2$, y(0) = 1. Also find y(0, 1) and y(0, 2).
- 16. By reducing to first order solve $y'' + (y')^2 = 0$.

Turn

- 17. Find fundamental set of solutions of $2t^2y'' + 3ty' y = 0$ t > 0. Given that $y_1(t) = t^{-1}$ is a solution.
- 18. Solve y'' + 8y' + 16y = 0.
- 19. Find the inverse transform of $\frac{4}{(s+1)(s+2)}$.
- 20. Solve the initial value problem y'' + y' 6y = 1 y(0) = 0, y'(0) = 1.
- 21. Find $L(te^{-t}\sin t)$.
- 22. Using convolution property find $L^{-1}\left[\frac{1}{s(s^2+4^2)}\right]$.
- 23. Use Trapezoidal rule with n = 4 to estimate $\int_{1}^{2} x^{2} dx$.
- 24. Solve the partial differential equation $u_{yy} + 4u = 0$.

 $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essays)

Answer any six questions.

Each question carries 5 marks.

- 25. Solve $(x^2D^2 + 3xD + 1)y = 0$
- 26. Find the general solution of the differential equation $y'' 2y' + 5y = 5x^3 6x^2 + 6x$.
- 27. Find the Laplace transform of $e^{-2t}u(t-3)$.
- 28. Find $L^{-1} \left(\frac{se^{-2s}}{s^2 + \pi^2} \right)$.
- 29. Find the Fourier series expansion of:

$$f(x) = \begin{cases} \sin x & 0 < x < \pi \\ 0 & \pi < x < 2\pi \end{cases}.$$

- 30. Solve $xy'' y' = (3+x)x^2e^x$.
- 31. Find the solution of $u_x + u_y = 0$ by separating variables.
- 32. Find approximate solution of $y' + y = e^x y(0) = 0$.
- 33. Obtain the half-range cosine series of f(x) = x when 0 < x < 2.

 $(6 \times 5 = 30 \text{ marks})$

Part D

Answer any **two** questions. Each question carries 10 marks.

- 34. Solve the non-homogeneous equation : $y'' y' 2y = 10 \cos x$.
- 35. Solve the initial value problem y'' + 2y' + 2y = r(t)

where
$$r(t) = \begin{cases} 10 \sin 2t & \text{if } 0 < t < \pi \\ 0 & \text{if } t > \pi \end{cases}$$

$$y(0) = 1 \quad y'(0) = -5.$$

Using Laplace transforms.

36. Find the Fourier series of the functions

$$f(x) = \begin{cases} x + x^2 - \lambda < x < \pi \\ \pi^2 \qquad x = \pm \pi \end{cases}$$

Deduce that
$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$$
.

 $(2 \times 10 = 20 \text{ marks})$