Name	••••	••••	****	********	*****

Reg. No.....

SECOND SEMESTER B.Sc. DEGREE EXAMINATION, MAY 2016

(CUCBCSS-UG)

Complementary Course

MAT 2C 02-MATHEMATICS

Time : Three Hours

Maximum: 80 Marks

Part A

Answer all questions.

- 1. Define a smooth curve.
- 2. Find $\frac{d}{dt} \left(\tanh \sqrt{1+t^2} \right)$.
- 3. Find the first four terms of the sequence $a_n = (-1)^{n+1} \frac{1}{n}$, $n \ge 1$.
- 4. Give an example of a sequence which has no upper bound.
- 5. State Leibnitz's theorem for the convergence of sequence.
- 6. Show that $(2,3\pi/4)$ lies on the curve $r = 2\sin 2\theta$.
- 7. Write the formula for finding the length of the curve in polar co-ordinates.
- 8. Find the Cartesian equation of the surface $z = r^2$.
- 9. Define level surface of f.
- 10. When we say that a function f is continuous?
- 11. Which order of differentiation will calculate f_{xy} faster, x first or y first for $f(x,y) = x \sin y + e^y$.
- 12. Define $\cosh x$.

 $(12 \times 1 = 12 \text{ marks})$

Part B

Answer all questions.

- 13. Find the length of the curve $y = (x/2)^{2/3}$ from x = 0 to x = 2.
- 14. Evaluate $\int_{0}^{1} \frac{2dx}{\sqrt{3+4x^2}}$.

15. Find the volume of the solid generated by revolving the region between the curve :

$$y = \sqrt{x}$$
, $0 \le x \le 4$ and the x-axis.

- 16. Find the n^{th} term of the sequence 1, -4, 9, -16, 25, ...
- 17. Replace $r\cos\theta = -4$ to the equivalent Cartesian equation.
- 18. Graph the set of points whose polar co-ordinates satisfy $1 \le r \le 2$, $\theta = \pi/4$.
- 19. Find all polar co-ordinates pairs which label the same as $(2, -\pi/3)$.
- 20. Find $\lim_{(x, y) \to (1, 1)} \frac{x^2 y^2}{x y}$.
- 21. Find f_x if $f(x,y) = 2y/(y + \cos x)$.
- 22. Find the length of the curve $r = 1 \cos^{\theta}$.
- 23. Find the directrix of the parabola $r = \frac{25}{10 + 10\cos\theta}$.
- 24. Show that $\lim_{(x, y) \to (3,-4)} \sqrt{x^2 + y^2} = 5$.

 $(9 \times 2 = 18 \text{ marks})$

Part C

Answer any six questions.

- 25. The region bounded by the parabola $y = x^2$ and the line y = 2x in the first quadrant is revolved about the x-axis to generate a solid. Find the volume of the solid by Washer Method by explaining steps in detail.
- 26. Investigate the convergence of $\int_{0}^{3} \frac{dx}{(x-1)^{2/3}}$.
- 27. Show that $\frac{d}{dx} \left(\sinh^{-1} \left(u/a \right) \right) = \frac{1}{\sqrt{a^2 + u^2}} \frac{du}{dx}$.
- 28. Express 5.232323... as the ratio of two integers.
- 29. Check the convergence of $\sum a_n$ where $a_n = \begin{cases} n/2^n, n \text{ odd} \\ 1/2^n, n \text{ even} \end{cases}$

- 30. Graph the curve $r = 1 \cos^{\theta}$.
- 31. Find the equivalent Cartesian equation of $r = \frac{4}{2 \cos \theta \sin \theta}$.
- 32. Find $\lim_{(x, y) \to (0,0)} \frac{x^2 xy}{\sqrt{x} \sqrt{y}}$.
- 33. Find $\partial z/\partial x$ if $yz \ln z = x + y$ defines z as a function of two independent variables x and y and the partial derivative exists.

$$(6 \times 5 = 30 \text{ marks})$$

Part D

Answer any two questions.

- 34. Find the area of the surface generated by revolving the curve $y = x^3$, $0 \le x \le 1/2$ about the x-axis.
- 35. Find the radius and interval of convergence of $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$, $\sum_{n=1}^{\infty} n! x^n$.
- 36. (a) Write the chain rule and draw the tree diagram for finding $\frac{\partial w}{\partial r}$, $\frac{\partial w}{\partial s}$ if $w = x^2 + y^2 x = r s$, y = r + s.
 - (b) Using Implicit differentiation, find dy/dx if $x + \sin y 2y = 0$. (2 × 10 = 20 marks)