	0	n	Λ	a	
C	O	U	U	บ	•

(Pa	ges	:	3)
\A 6			U,

Nam	ıe

D	NT-
neg.	No

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2015

(U.G-CCSS)

Core Course—Computer Science CS 6B 15—COMPUTER ORGANISATION AND ARCHITECTURE

		CS	ов 19-			TION AND ARCH	ITECTURE
Ti	Th			C	2012 Admi	ssions)	
		e Hour					Maximum: 30 Weighta
I.	Ans	wer all	twelve (questions :			
	1			uction is mostly u		ate a transfer from me	mory to a processor regis
	2	MIMD	stands	for ———		 ,	
	3	The B	SA inst	ruction is ———			
	4	A float	ting poi	nt number that h	as a O in the	MSB of mantissa is s	said to have ————
	5	Memo	ry unit	accessed by conte	ent is called		
		(a)	Associa	ative Memory.	(b)	Read Only Memory.	
		(c)	Progra	ammable memory	(d)	Virtual Memory.	
	6	The re	egister t	that keeps track o	f instruction	s in memory is :	
		(a)	PC.	Line.	(b)	IR.	
		(c)	AR.		(d)	AC.	
	7	A Sta	ck-orga	nized Computer ı	ises instructi	on of ———	_ .
		(a)	Indire	ct addressing.	(b)	Two addressing.	
		(c)	Zero a	ddressing.	(d)	Index addressing.	
	8.	Write	Throug	gh technique is us	sed in which	memory for updating	the data :
		(a)	Virtua	al memory.	(b)	Main memory.	
		(c)	Cache	memory.	(d)	Auxiliary Memory.	
	9	. In a r	nemory	-mapped I/O syste	em, which of	the following will not	be there ?
		(a)	LDA.		(b)	IN.	
	2.5	(c)	ADD.		(4)	OUT.	

	10	Floating point representation is used to store ————.					
	11	The pipeline that operates on a stream of instruction by overlapping the phases of instruction cycle is ————.					
	12	In DMA the data transfer is controlled by ————.					
		$(12 \times \frac{1}{4} = 3 \text{ weightage})$					
II.	Ans	wer all nine questions.					
	13	What is the difference between direct and indirect address instruction?					
	14	Compare volatile and non-volatile memory. Give example for both.					
	15	5 Define a microprogrammed control Unit.					
±01	16	6 What is multiprogramming?					
ş	17	7 Define virtual memory. Why is it used?					
	18	What is pipelining?					
	19	Define effective address.					
	20	Define hit and miss. What is meant by hit ratio?					
	21	Distinguish between address space and memory space.					
		$(9 \times 1 = 9 \text{ weightage})$					
III.	An	swer any five questions.					
	22.	Explain the different phases of an instruction cycle.					
	23.	With the help of a block diagram explain the control unit of basic computer.					
	24.	Define:					
	*:	(a) Microoperation. (b) Microinstruction.					
		(c) Microprogram. (d) Microcode.					
	25.	What is associative memory? Explain the block diagram of associative memory.					
	26	. Differentiate between Isolated and memory mapped I/O.					
	27	27. Which are the different types of mapping techniques?					
	28	. Explain attached array processor.					

 $(5 \times 2 = 10 \text{ weightage})$

- IV. Answer any two questions.
 - 29. With the help of block diagrams explain RAM and ROM organization?
 - 30. What are Instruction pipeline? Explain how the instruction cycle in the CPU can be processed with a four segment pipeline?
 - 31 Explain DMA controller in detail?

 $(2 \times 4 = 8 \text{ weightage})$