1	000	
1	828	

(Pages : 2)

Name

Dag	No
nez.	140

SIXTH SEMESTER B.Sc. DEGREE EXAMINATION, MARCH/APRIL 2016

(UG-CCSS)

Computer Science-Core Course

CS 6B 15-COMPLETER ORGANISATION AND ARCHITECTURE

CS OB 15—COMPUTER ORGANISATION AND ARCHITECTURE							
		(2012 Admi	ission	onwards)			
ne : Three I	lours			Maximum: 30 Weightage			
I. Answe	r all <i>twel</i>	ve questions :					
1	1 A computer with 12 address buses can address how many memory locations?						
2	The register that stores address of stack is ———.						
3	Transferring data from main memory to cache is called ———.						
4	Cache memory works on the principle of:						
	(a)	Locality of data.	(b)	Locality of memory.			
©	(c)	Locality of reference.	(d)	Locality of reference and memory.			
5	5 Memory unit that communicates directly with the CPU is called the ———.						
	(a)	Main memory.	(b)	Secondary memory.			
	(c)	Register.					
6	CISC s	tands for ———.					
7	The instruction that cause transfer of data from one location to another without changing						
	the binary information content are ———.						
8	8 Interrupts which are initiated by an instruction are ———.						
	(a)	Internal.	(b)	External.			
	(c)	Hardware.	(d)	Software.			
9	9 In Virtual memory system, the address used by the programmer by the program						
	belongs	s to :					
	(a)	Memory space.	(b)	Address space.			
	(c)	Physical address.	(d)	Main memory address.			
10	SIMD	computer organization corr	eenor	ade to			

- 11 In GRO, when the binary code for selector A is 000 then the multiplexer A selects input from ———.
- 12 —— is a program control instruction.
 - (a) IN.

(b) SETC.

(c) SKIP.

(d) None of these.

 $(12 \times \frac{1}{4} = 3 \text{ weightage})$

II. Answer all nine questions:

- 13 Define a cache memory. Why is it used?
- 14 Define a stack. What are its operations?
- 15 Define control memory and control address register.
- 16 Define a multiprogrammed control unit.
- 17 What is meant by locality of reference?
- 18 What do you mean by multiprocessing systems?
- 19 What is a RISC pipeline?
- 20 What is meant by hardwired control?
- 21 Define the track and sector in a magnetic disk.

 $(9 \times 1 = 9 \text{ weightage})$

III. Answer any five questions:

- 22 Explain the various computer instruction formats.
- 23 What are asynchronous data transfer?
- 24 Explain the block diagram of a typical RAM chip.
- 25 Explain memory hierarchy in detail.
- 26 Give the hardware organization of associative memory.
- 27 Compare various types of ROM.
- 28 What is meant by vector processing? Give some application areas of vector processing.

 $(5 \times 2 = 10 \text{ weightage})$

IV. Answer any two questions :

- 29 What is auxiliary memory? Explain two types of auxiliary devices.
- 30 What is meant by an arithmetic pipeline? Give an example of a pipeline unit for floating point addition and subtraction.
- 31 Explain different types of computer instruction with suitable examples.

 $(2 \times 4 = 8 \text{ weightage})$