
MODULE III

USER INTERFACES DEVELOPMENT IN ANDROID

UI development in Android is fun. It’s fun because it’s relatively easy.
With Android, we have a simple-to-understand framework with a limited set of
out-of-the-box controls. The available screen area is generally limited. Android
also takes care of a lot of the heavy lifting normally associated to designing and
building quality UIs. This, combined with the fact that the user usually wants to
do one specific action, allows us to easily build a good UI to deliver a good user
experience. The Android SDK provides text fields, buttons, lists, grids, and so

on. In addition, Android provides a collection of controls that are appropriate for
mobile devices.

At the heart of the common controls are two classes:
android.view.View and android.view.ViewGroup. As the name of the first class
suggests, the View class represents a general-purpose View object. The common

controls in Android ultimately extend the View class. ViewGroup is also a view,
but it contains other views too. ViewGroup is the base class for a list of layout
classes. Android, like Swing, uses the concept of layouts to manage how controls
are laid out within a container view. Using layouts, as we’ll see, makes it easy
for us to control the position and orientation of the controls in our UIs.

We can construct UIs entirely in code. We can also define UIs in
XML. We can even combine the two define the UI in XML and then refer to it,
and modify it, in code. We will find the terms view, control, widget, container,
and layout in discussions regarding UI development. If we are new to Android

programming or UI development in general, we might not be familiar with these
terms. We’ll briefly describe them before we get started (see Table 6–1).

Table 6–1. UI Nomenclature

Term
Description

View, widget,
control

Each of these represents a UI element. Examples include
a button, a grid, a list, a window, a dialog box, and so on.
The terms view, widget, and control are used
interchangeably in this chapter.

Container This is a view used to contain other views. For example, a
grid can be considered a container because it contains
cells, each of which is a view.

Layout This is a visual arrangement of containers and views and

can include other layouts.

BUILDING UI COMPLETELY IN CODE
The first example, Listing 6–1, demonstrates how to build the UI

entirely in code. To try this, create a new Android project with an activity named

MainActivity and then copy the code from Listing 6–1 into our MainActivity
class.

Listing 6–1. Creating a Simple User Interface Entirely in Code
package com.androidbook.controls;
import android.app.Activity;

import android.os.Bundle;
import android.view.ViewGroup.LayoutParams;
import android.widget.LinearLayout;
import android.widget.TextView;
public class MainActivity extends Activity
{

private LinearLayout nameContainer;
private LinearLayout addressContainer;
private LinearLayout parentContainer;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState)

{
super.onCreate(savedInstanceState);
createNameContainer();
createAddressContainer();
createParentContainer();
setContentView(parentContainer);

}
private void createNameContainer()
{

nameContainer = new LinearLayout(this);
nameContainer.setLayoutParams(new

LayoutParams(LayoutParams.FILL_PARENT,

LayoutParams.WRAP_CONTENT));
nameContainer.setOrientation(LinearLayout.HORIZONTAL);
TextView nameLbl = new TextView(this);
nameLbl.setText("Name: ");
TextView nameValue = new TextView(this);
nameValue.setText("John Doe");

nameContainer.addView(nameLbl);
nameContainer.addView(nameValue);

}
private void createAddressContainer()
{

addressContainer = new LinearLayout(this);

addressContainer.setLayoutParams(new
LayoutParams(LayoutParams.FILL_PARENT,

LayoutParams.WRAP_CONTENT));
addressContainer.setOrientation(LinearLayout.VERTICAL);
TextView addrLbl = new TextView(this);

addrLbl.setText("Address:");
TextView addrValue = new TextView(this);
addrValue.setText("911 Hollywood Blvd");
addressContainer.addView(addrLbl);
addressContainer.addView(addrValue);

}
private void createParentContainer()

{
parentContainer = new LinearLayout(this);
parentContainer.setLayoutParams(new
LayoutParams(LayoutParams.FILL_PARENT,
LayoutParams.FILL_PARENT));
parentContainer.setOrientation(LinearLayout.VERTICAL);

parentContainer.addView(nameContainer);
parentContainer.addView(addressContainer);

}
}

As shown in Listing 6–1, the activity contains three LinearLayout

objects. As we mentioned earlier, layout objects contain logic to position objects
within a portion of the screen. A LinearLayout, for example, knows how to lay
out controls either vertically or horizontally. Layouts objects can contain any
type of view even other layouts. The nameContainer object contains two
TextView controls: one for the label Name: and the other to hold the actual name
(such as John Doe). The addressContainer also contains two TextView controls.

The difference between the two containers is that the nameContainer is laid out
horizontally and the addressContainer is laid out vertically. Both of these
containers live within the parentContainer, which is the root view of the activity.

After the containers have been built, the activity sets the content of
the view to the root view by calling setContentView(parentContainer). When it

comes time to render the UI of the activity, the root view is called to render itself.
The root view then calls its children to render themselves, and the child controls
call their children, and so on, until the entire UI is rendered. As shown in Listing
6–1, we have several LinearLayout controls. Two of them are laid out vertically,
and one is laid out horizontally. The nameContainer is laid out horizontally. This
means the two TextView controls appear side by side horizontally. The

addressContainer is laid out vertically, which means the two TextView controls
are stacked one on top of the other. The parentContainer is also laid out
vertically, which is why the nameContainer appears above the
addressContainer. Note a subtle difference between the two vertically laid-out
containers, addressContainer and parentContainer. parentContainer is set to
take up the entire width and height of the screen:

parentContainer.setLayoutParams(new
LayoutParams(LayoutParams.FILL_PARENT, LayoutParams.FILL_PARENT));

And addressContainer wraps its content vertically:

addressContainer.setLayoutParams(new
LayoutParams(LayoutParams.FILL_PARENT,

LayoutParams.WRAP_CONTENT));

Said another way, WRAP_CONTENT means the view should take just the space

it needs in that dimension and no more, up to what the containing view will
allow. For the addressContainer, this means the container will take two lines
vertically, because that’s all it needs.

Figure 6–1

BUILDING UI USING XML
XML layout files are stored under the resources (/res/) directory in a

folder called layout. By default, we will get an XML layout file named main.xml,
located under the res/layout folder. Double-click main.xml to see the contents.
Eclipse will display a visual editor for our layout file. We probably have a string

at the top of the view that says “Hello World, MainActivity!” or something like
that. Click the main.xml tab at the bottom of the view to see the XML of the
main.xml file. This reveals a LinearLayout and a TextView control. Using either
the Layout or main.xml tab, or both, re-create Listing 6–2 in the main.xml file.
Save it.
Listing 6–2. Creating a User Interface Entirely in XML

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent">

<!-- NAME CONTAINER -->
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal" android:layout_width="fill_parent"
android:layout_height="wrap_content">

<TextView android:layout_width="wrap_content"

android:layout_height="wrap_content" android:text="Name:" />

<TextView android:layout_width="wrap_content"

android:layout_height="wrap_content" android:text="John Doe" />
</LinearLayout>

<!-- ADDRESS CONTAINER -->
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout_width="fill_parent"

android:layout_height="wrap_content">

<TextView android:layout_width="fill_parent"
android:layout_height="wrap_content" android:text="Address:" />

<TextView android:layout_width="fill_parent"

android:layout_height="wrap_content" android:text="911 Hollywood Blvd."

/>
</LinearLayout>

</LinearLayout>

Under our new project’s src directory, there is a default .java file

containing an Activity class definition. Double-click that file to see its contents.
Notice the statement setContentView(R.layout.main). The XML snippet shown in
Listing 6–2, combined with a call to setContentView(R.layout.main), will render
the same UI as before when we generated it completely in code. The XML file is
self-explanatory, but note that we have three container views defined. The first
LinearLayout is the equivalent of our parent container. This container sets its

orientation to vertical by setting the corresponding property like this:
android:orientation="vertical". The parent container contains two LinearLayout
containers, which represent nameContainer and addressContainer. Running
this application will produce the same UI as our previous example application.
The labels and values will be displayed as shown in Figure 6–1.

BUILDING UI IN XML WITH CODE
Listing 6–2 is a contrived example. It doesn’t make any sense to

hard-code the values of the TextView controls in the XML layout. Ideally, we
should design our UIs in XML and then reference the controls from code. This
approach enables us to bind dynamic data to the controls defined at design
time. In fact, this is the recommended approach. It is fairly easy to build layouts

in XML and then use code to populate the dynamic data. Listing 6–3 shows the
same UI with slightly different XML. This XML assigns IDs to the TextView
controls so that we can refer to them in code.
Listing 6–3. Creating a User Interface in XML with IDs

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent">
<!-- NAME CONTAINER -->

<LinearLayout
xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="horizontal" android:layout_width="fill_parent"
android:layout_height="wrap_content">
<TextView android:layout_width="wrap_content"

android:layout_height="wrap_content" android:text="@string/name_text" />

<TextView android:id="@+id/nameValue"
android:layout_width="wrap_content"
android:layout_height="wrap_content"/>
</LinearLayout>

<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="wrap_content">

<TextView android:layout_width="fill_parent"
android:layout_height="wrap_content" android:text="@string/addr_text" />

<TextView android:id="@+id/addrValue"
android:layout_width="fill_parent" android:layout_height="wrap_content" />
</LinearLayout>

</LinearLayout>

In addition to adding the IDs to the TextView controls that we want
to populate from code, we also have label TextView controls that we’re
populating with text from our strings resource file. These are the TextViews
without IDs that have an android:text attribute. As we may recall from Chapter
3, the actual strings for these TextViews will come from our strings.xml file in
the /res/values folder. The developers of Android have done a nice job of making

just about every aspect of a control settable via XML or code. It’s usually a good
idea to set the control’s attributes in the XML layout file rather than using code.
However, there will be lots of times when we need to use code, such as setting a
value to be displayed to the user.

FILL_PARENT vs. MATCH_PARENT

The constant FILL_PARENT was deprecated in Android 2.2 and
replaced with MATCH_PARENT. This was strictly a name change, though. The
value of this constant is still -1. Similarly, for XML layouts, fill_parent was
replaced with match_parent. So what value do we use? Instead of FILL_PARENT
or MATCH_PARENT, we could simply use the value -1, and you’d be fine.
However, this isn’t very easy to read, and we don’t have an equivalent unnamed

value to use with our XML layouts. There’s a better way.

ANDROID'S COMMON CONTROLS
We will now start our discussion of the common controls in the

Android SDK. We’ll start with text controls and then cover buttons, check boxes,

radio buttons, lists, grids, date and time controls, and a map-view control. We
will also talk about layout controls.

TEXT CONTROLS
Text controls are likely to be the first type of control that we’ll work

with in Android. Android has a complete but not overwhelming set of text
controls. In this section, we are going to discuss the TextView, EditText,

AutoCompleteTextView, and MultiCompleteTextView controls. Figure 6–2 shows
the controls in action.

TextView:-
A TextView displays text to the user and optionally allows them to

edit it. It is a complete text editor but the basic class is not allowing to editing.

The TextView control knows how to display text but does not allow editing. This
might lead us to conclude that the control is essentially a dummy label. We can
set the autoLink property to emai or web, and the control will find and highlight
any e-mail addresses and is utilizing the

android.text.util.Linkify class. The main attributes are id, hint, maxHeight,
maxWidth, password, minHeight, minWidth, text, phoneNumber, textColor,

textStyle etc.

EditText:-
The EditText control is a subclass of TextView. As suggested by the

name, the EditText control allows for text editing. EditText is not as powerful as
the text-editing controls that we find on the Internet, but users of Android-based

devices probably won’t type documents they’ll type a couple paragraphs at most.
Therefore, the class has limited but appropriate functionality and may even
surprise us. For example, one of the most significant properties of an EditText is
the inputType. We can set the inputType property to textAutoCorrect have the
control correct common misspellings. We can set it to textCapWords to have the
control capitalize words. Other options expect only phone numbers or

passwords. The old default behavior of the EditText control is to display text on
one line and expand as needed. The user to a single line by setting the
singleLine property to true. The user will have to continue typing on the same
line. With inputType, if we don’t specify textMultiLine, the EditText will default
to single-line only. So if we want the old default behavior of multiline typing, we
need to specify inputType with textMultiLine.

AutoCompleteTextView:-
The AutoCompleteTextView control is a TextView with auto-complete

functionality. In other words, as the user types in the TextView, the control can
display suggestions for selection. For example, if the user types en, the control
suggests English. If the user types gr, the control recommends Greek, and so

on.

MultiAutoCompleteTextView:-
The control offers suggestions only for the entire text in the text view.

In other words, if we type a sentence, we don’t get suggestions for each word.

That’s where MultiAutoCompleteTextView comes in. We can use the
MultiAutoCompleteTextView to provide suggestions as the user types. For
example, the user typed the word English followed by a comma, and then Ge, at
which point the control suggested German. If the user were to continue, the
control

would offer additional suggestions. Using the
MultiAutoCompleteTextView is like using the AutoCompleteTextView. The

difference is that we have to tell the control where to start suggesting again. For
example, in Figure 6–2, we can see that the control can offer suggestions at the
beginning of the sentence and after it sees a comma. The
MultiAutoCompleteTextView control requires that we give it a tokenizer that can
parse the sentence and tell it whether to start suggesting again. Listing 6–8
demonstrates using the MultiAutoCompleteTextView control with the XML and

then the Java code.

Figure 6–2. Text controls in Android

BUTTON CONTROLS
Buttons are common in any widget toolkit, and Android is no

exception. Android offers the typical set of buttons as well as a few extras. We
will discuss three types of button controls: the basic button, the image button,

and the toggle button. The figure shows a UI with these controls. The button at
the top is the basic button, the middle button is an image button, and the last
one is a toggle button.

The Basic Button Control:-
The basic button class in

Android is android.widget.Button. There’s
not much to this type of button, beyond
how we use it to handle click events. We
register for the on-click event by calling
the setOnClickListener() method with an
OnClickListener. When the button is
clicked, the onClick() method of the

listener is called. The handler method will
be called with target set to the View object
representing the button that was clicked.
Notice how the switch statement in the
click handler method uses the resource
IDs of the buttons to select the logic to run. Using this method means we won’t

have to explicitly create each Button object in our code, and we can reuse the
same method across multiple buttons. This makes things easier to understand
and maintain. This works with the other button types as well.

The ImageButton Control:-
Android provides an image button via android.widget.ImageButton.

Using an image button is similar to using the basic button. The image file for the
button must exist under /res/drawable. In our case, we’re simply reusing the
Android icon for the button. Note that we only need to do one or the other. We
don’t need to specify the button image in both the XML file and in code. One of
the nice features of an image button is that we can specify a transparent
background for the button. The result will be a clickable image that acts like a

button but can look like whatever we want it to look like. Just set
android:background="@null" for the image button.

The ToggleButton Control:-
The ToggleButton control, like a check box or a radio button, is a

two-state button. This button can be in either the ON or OFF state. As shown in

Figure 6–3, the ToggleButton’s default behavior is to show a green bar when in
the ON state and a grayed-out bar when in the OFF state. Moreover, the default
behavior also sets the button’s text to ON
when it’s in the ON state and OFF when
it’s in the OFF state. We can modify the
text for the ToggleButton if ON/OFF is not

appropriate for our application. For
example, if we have a background process
that we want to start and stop via a
ToggleButton, we could set the button’s
text to Stop and Run by using
android:textOn

and android:textOff

properties.

CHECKBOX CONTROL:-
The CheckBox control is another two-state button that allows the

user to toggle its state. The difference is that, for many situations, the users

don’t view it as a button that invokes immediate action. From Android’s point of
view, however, it is a button, and we can do anything with a check box that we
can do with a button. We manage the state of a check box by calling
setChecked() or toggle(). We can obtain the state by calling isChecked().If we
need to implement specific logic when a check box is checked or unchecked, we
can register for the on-checked event by calling setOnCheckedChangeListener()
with an implementation of the OnCheckedChangeListener interface. We’ll then

have to implement the onCheckedChanged() method, which will be called when
the check box is checked or unchecked. The nice part of setting up the
OnCheckedChangeListener is that we are passed the new state of the CheckBox
button. We could instead use the OnClickListener technique as we used with
basic buttons. When the onClick() method is called, we would need to determine
the new state of the button by casting it appropriately and then calling

isChecked() on it.

RADIO BUTTON CONTROLS
RadioButton controls are an

integral part of any UI toolkit. A radio
button gives the users several choices and

forces them to select a single item. To
enforce this single-selection model, radio
buttons generally belong to a group, and
each group is forced to have only one item
selected at a time. To create a group of
radio buttons in Android, first create a

RadioGroup, and then populate the group
with radio buttons. Note that the radio buttons within the radio group are, by
default, unchecked to begin with, although we can set one to checked in the
XML definition. To set one of the radio buttons to the checked state
programmatically, we can obtain a reference to the radio button and call
setChecked().We can also use the toggle() method to toggle the state of the radio

button. As withthe CheckBox control, we will be notified of on-checked or on-
unchecked events if we call the setOnCheckedChangeListener() with an
implementation of the OnCheckedChangeListener interface. There is a slight
difference here, though. This is a different class than before. This time, it’s
technically the RadioGroup.OnCheckedChangeListener class, whereas before it
was the CompoundButton.OnCheckedChangeListener class. The RadioGroup

can also contain views other than the radio button.

IMAGE VIEW CONTROL
This is used to display an image, where the image can come from a

file, a content provider, or a resource such as a drawable. We can even specify
just a color, and the ImageView will display that color. Listing 6–21 shows some

XML examples of ImageViews, followed by some code that shows how to create
an ImageView.
Listing 6–21. ImageViews in XML and in Code

<ImageView android:id="@+id/image1"
android:layout_width="wrap_content" android:layout_height="wrap_content"
android:src="@drawable/icon" />

<ImageView android:id="@+id/image2"

android:layout_width="125dip" android:layout_height="25dip"
android:src="#555555" />

<ImageView android:id="@+id/image3"
android:layout_width="wrap_content"

android:layout_height="wrap_content"/>

<ImageView android:id="@+id/image4"
android:layout_width="wrap_content" android:layout_height="wrap_content"
android:src="@drawable/manatee02"
android:scaleType="centerInside"
android:maxWidth="35dip" android:maxHeight="50dip" />

ImageView imgView = (ImageView)findViewById(R.id.image3);
imgView.setImageResource(R.drawable.icon);
imgView.setImageBitmap(BitmapFactory.decodeResource(

this.getResources(), R.drawable.manatee14));
imgView.setImageDrawable(

Drawable.createFromPath("/mnt/sdcard/dave2.jpg"));
imgView.setImageURI(Uri.parse("file://mnt/sdcard/dave2.jpg"));

In this example, we have four images defined in XML. The first is
simply the icon for our application. The second is a gray bar that is wider than it
is tall. The third definition does not specify an image source in the XML, but we

associate an ID with this one (image3) that we can use from our code to set the
image. The fourth image is another of our drawable image files where we not
only specify the source of the image file but also set the maximum dimensions of
the image on the screen and define what to do if the image is larger than our
maximum size. In this case, we tell the ImageView to center and scale the image
so it fits inside the size we specified.

In the Java code of Listing 6–21 we show several ways to set the
image of image3. We first of course must get a reference to the ImageView by
finding it using its resource ID. The first setter method, setImageResource(),
simply uses the image’s resource ID to locate the image file to supply the image
for our ImageView. The second setter uses the BitmapFactory to read in an

image resource into a Bitmap object and then sets the ImageView to that
Bitmap. Note that we could have done some modifications to the Bitmap before

applying it to our ImageView, but in our case, we used it as is. In addition, the
BitmapFactory has several methods of creating a Bitmap, including from a byte
array and an InputStream. We could use the InputStream method to read an

image from a web server, create the Bitmap image, and then set the ImageView
from there.

The third setting uses a Drawable for our image source. In this case,
we’re showing the source of the image coming from the SD card. We ’ll need to
put some sort of image file out on the SD card with the proper name for this to
work for us. Similar to BitmapFactory, the Drawable class has a few different

ways to construct Drawables, including from an XML stream.

The final setter method takes the URI of an image file and uses that
as the image source. For this last call, don’t think that we can use any image
URI as the source. This method is really only intended to be used for local
images on the device, not for images that we might find through HTTP. To use

Internet-based images as the source for our ImageView, we ’d most likely use
BitmapFactory and an InputStream.

DATE AND TIME CONTROLS
Date and time controls are common in many widget tool kits.

Android offers several date- and time-based controls. We are going to introduce

the DatePicker, TimePicker, DigitalClock, and AnalogClock controls.

The DatePicker and TimePicker Controls:-
As the names suggest, we use the

DatePicker control to select a date and the
TimePicker control to pick a time. If we look at

the XML layout, we can see that defining these
controls is easy. As with any other control in the
Android toolkit, we can access the controls
programmatically to initialize them or to retrieve
data from them. Note that for the month, the
internal value is zero-based, which means that

January is 0 and December is 11. For the
TimePicker, the number of hours and minutes is
set to 10. Note also that this control supports
24–hour view. If we do not set values for these
controls, the default values will be the current
date and time as known to the device. Finally,

note that Android offers versions of these controls as modal windows, such as
DatePickerDialog and TimePickerDialog. These controls are useful if we want to
display the control to the user and force the user to make a selection.

The DigitalClock and AnalogClock Controls:-
Android also offers DigitalClock

and AnalogClock controls. As shown, the

digital clock supports seconds in addition to
hours and minutes. The analog clock in
Android is a two-handed clock, with one hand
for the hour indicator and the other hand for
the minute indicator. These two controls are
really just for displaying the current time, as
they don’t let we modify the date or time. In

other words, they are controls whose only
capability is to display the current time. Thus,
if we want to change the date or time, we’ll need to stick to the
DatePicker/TimePicker or DatePickerDialog/TimePickerDialog. The nice part
about these two clocks, though, is that they will update themselves without
having to do anything. That is, the seconds tick away in the DigitalClock, and

the hands move on the AnalogClock without anything extra from us.

MAP VIEW CONTROL
The com.google.android.maps.MapView control can display a map.

We can instantiate this control either via XML layout or code, but the activity
that uses it must extend MapActivity. MapActivity takes care of multithreading

requests to load a map, perform caching, and so on. Listing 6–25 shows an
example instantiation of a MapView.
Listing 6–25. Creating a MapView Control via XML Layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"

android:orientation="vertical" android:layout_width="fill_parent"
android:layout_height="fill_parent">

<com.google.android.maps.MapView
android:layout_width="fill_parent"
android:layout_height="fill_parent"

android:enabled="true"
android:clickable="true"
android:apiKey="myAPIKey"/>

</LinearLayout>

UNDERSTANDING ADAPTERS

List controls are used to display collections of data. But instead of
using a single type of control to manage both the display and the data, Android
separates these two responsibilities into list controls and adapters. List controls
are classes that extend android.widget.AdapterView and include ListView,
GridView, Spinner, and Gallery.

Figure 6–8. AdapterView class hierarchy

AdapterView itself extends android.widget.ViewGroup, which means
that ListView, GridView, and so on are container controls. In other words, list

controls contain collections of child views. The purpose of an adapter is to
manage the data for an AdapterView and to provide the child views for it. Let’s
see how this works by examining the SimpleCursorAdapter.

ADAPTER VIEWS
Now that we’ve been introduced to adapters, it is time to put them to

work for us, providing data for list controls. In this section, we’re going to first
cover the basic list control, the ListView. Then, we’ll describe how to create our
own custom adapter, and finally, we’ll describe the other types of list controls:
GridViews, spinners, and the gallery.

LIST VIEW

The ListView control displays
a list of items vertically. That is, if we’ve
got a list of items to view and the number
of items extends beyond what we can
currently see in the display, we can scroll
to see the rest of the items. We generally
use a ListView by writing a new activity

that extends android.app.ListActivity.
ListActivity contains a ListView, and we
set the data for the ListView by calling the
setListAdapter() method. As we described
previously, adapters link list controls to
the data and help prepare the child views

for the list control. Items in a ListView
can be clicked to take immediate action
or selected to act on the set of selected

items later. We’re going to start really simple and then add functionality as we
go.

Clickable Items in a ListView:-
We’re able to scroll up and

down the list to see all our contact names,
but that’s about it. What if we want to do
something a little more interesting with
this example, like launch the Contact
application when a user clicks one of the

items in our ListView?

Adding Other Controls with a ListView:-
If we want additional controls

in our main layout, we can provide our
own layout XML file, put in a ListView,

and add other desired controls. For
example, we could add a button below the
ListView in the UI to submit an action on
the selected items, as shown in the figure.

GRID VIEW

Android has a GridView
control that can display data in the form
of a grid. We use the term data here; the
contents of the grid can be text, images,
and so on. The GridView control displays

information in a grid. The usage pattern
for the GridView is to define the grid in
the XML layout and then bind the data to
the

grid using

an
android.widget.ListAdapter. Don’t forget
to add the uses-permission tag to the

AndroidManifest.xml file to make this
example work.

We’ve no doubt noticed that
the adapter used by the grid is a
ListAdapter. Lists are generally one-

dimensional, whereas grids are two-
dimensional. We can conclude, then, that the grid actually displays list-oriented
data. And it turns out that the list is displayed by rows. That is, the list goes
across the first row, then across the second row, and so on.

As before, we have a list control that works with an adapter to

handle the data management, and the generation of the child views. The same
techniques we used before should work just fine with GridViews. One exception

relates to making selections: there is no way to specify multiple choices in a
GridView.

SPINNER CONTROL
The Spinner control is like a drop-down menu. It is typically used to

select from a relatively short list of choices. If the choice list is too long for the
display, a scrollbar is automatically added for us. Although a spinner is
technically a list control, it will appear to us more like a simple TextView control.

In other words, only one value will be displayed when the spinner is
at rest. The purpose of the spinner is to allow the user to choose from a set of
predetermined values: when the user clicks the small arrow, a list is displayed,

and the user is expected to pick a new value. Populating this list is done in the
same way as the other list controls: with an adapter. Because a spinner is often
used like a drop-down menu, it is common to see the adapter get the list choices
from a resource file. Notice the new attribute called android:prompt for setting a
prompt at the top of the list to choose from. The actual text for our spinner
prompt is in our /res/values/strings.xml file. As we should expect, the Spinner

class has a method for setting the prompt in code as well.

STYLES AND THEMES
Android provides several ways to alter the style of views in our

application. We’ll first cover using markup tags in strings and then how to use
spannables to change specific visual attributes of text. But what if we want to

control how things look using a common specification for several views or across
an entire activity or application?

GALLERY CONTROL
The Gallery control is a

horizontally scrollable list control that

always focuses at the center of the list.
This control generally functions as a
photo gallery in touch mode. The Gallery
control is typically used to display
images, so our adapter is likely going to
be specialized for images. We’ll show a
custom image adapter in next section on

custom adapters. See the figure.

Using Styles:-
Sometimes, we want to

highlight or style a portion of the View’s
content. We can do this statically or

dynamically. Statically, we can apply
markup directly to the strings in our
string resources, as shown here:

<string name="styledText"><i>Static</i> style in a TextView.</string>

We can then reference it in our XML or from code. Note that we can
use the following HTML tags with string resources: <i>, , and <u> for italics,
bold, and underlined, respectively, as well as <sup> (superscript), <sub>
(subscript), <strike> (strikethrough), <big>, <small>, and <monospace>. We can
even nest these to get, for example, small
superscripts. This works not just in

TextViews but also in other views, like
buttons. The figure shows what styled and
themed text looks like, using many of the
examples in this section.

Styling a TextView control’s
content programmatically requires a little

additional work but allows for much more
flexibility (see Listing 6–35), because we
can style it at runtime. This flexibility can
only be applied to a spannable, though,
which is how EditText normally manages
the internal text, whereas TextView does

not normally use Spannable. Spannable is
basically a String that we can apply styles
to. To get a TextView to store text as a
spannable, we can call setText() this way:

tv.setText("This text is stored in a

Spannable",

TextView.BufferType.SPANNABLE);

Then, when we call tv.getText(), we ’ll get a spannable. We can get the

content of the EditText (as a Spannable object) and then set styles for portions
of the text. The code in the listing sets the text styling to bold and italics and
sets the background to red. We can use all the styling options as we have with
the HTML tags as described previously, and then some.

Using Themes:-
One problem with styles is that we need to add an attribute

specification of style="@style/..." to every view definition that we want it to apply
to. If we have some style elements we want applied across an entire activity, or
across the whole application, we should use a theme instead. A theme is really
just a style applied broadly; but in terms of defining a theme, it’s exactly like a
style. In fact, themes and styles are fairly interchangeable: we can extend a

theme into a style or refer to a style as a theme. Typically, only the names give a
hint as to whether a style is intended to be used as a style or a theme. To specify
a theme for an activity or an application, we would add an attribute to the
<activity> or <application> tag in the AndroidManifest.xml file for our project.
The code might look like one of these:

<activity android:theme="@style/MyActivityTheme">
<application android:theme="@style/MyApplicationTheme">
<application android:theme="@android:style/Theme.NoTitleBar">

We can find the Android-provided themes in the same folder as the
Android-provided styles, with the themes in a file called themes.xml. When we

look inside the themes file, we will see a large set of styles defined, with names
that start with Theme. We will also notice that within the Android-provided
themes and styles, there is a lot of extending going on, which is why we end up
with styles called Theme.Dialog.AppError", This concludes our discussion of the
Android control set. As we mentioned in the beginning of the chapter, building
UIs in Android requires we to master two things: the control set and the layout

managers. In the next section, we are going to discuss the Android layout
managers.

UNDERSTANDING LAYOUT MANAGERS
Android offers a collection of view classes that act as containers for

views. These container classes are called layouts (or layout managers), and each

implements a specific strategy to manage the size and position of its children.
For example, the LinearLayout class lays out its children either horizontally or
vertically, one after the other. All layout managers derive from the View class;
therefore we can nest layout managers inside of one another. The layout
managers that ship with the Android SDK are defined in Table 6–2.

Table 6–2. Android Layout Managers

Layout Manager Description

LinearLayout Organizes its children either horizontally or vertically

TableLayout Organizes its children in tabular form

RelativeLayout Organizes its children relative to one another or to the

parent

FrameLayout Allows us to dynamically change the control(s) in the layout

GridLayout Organizes its children in a grid arrangement

LINEAR LAYOUT MANAGER
The LinearLayout layout manager is the most basic. This layout

manager organizes its children either horizontally or vertically based on the
value of the orientation property. We’ve used LinearLayout in several of our
examples so far. We can create a vertically oriented LinearLayout by setting the

value of orientation to vertical. Because layout managers can be nested, we
could, for example, construct a vertical layout manager that contained
horizontal layout managers to create a fill-in form, where each row had a label
next to an EditText control. Each row would be its own horizontal layout, but
the rows as a collection would be organized vertically.

Layout managers extend android.widget.ViewGroup, as do many
control-based container classes such as ListView. Although the layout managers
and control-based containers extend the same class, the layout manager classes
strictly deal with the sizing and position of controls and not user interaction
with child controls. For example, compare LinearLayout to the ListView control.
On the screen, they look similar in that both can organize children vertically.

But the ListView control provides APIs for the user
to make selections, whereas LinearLayout does not.
In other words, the control-based container
(ListView) supports user interaction with the items
in the container, whereas the layout manager
(LinearLayout) addresses sizing and positioning

only.

Using the LinearLayout layout manager

TABLE LAYOUT MANAGER
The TableLayout layout manager is an extension of LinearLayout.

This layout manager structures its child controls into rows and columns. To use

this layout manager, we create an instance of TableLayout and place TableRow
elements within it. These TableRow
elements contain the controls of the table.
Because the contents of a TableLayout are
defined by rows as opposed to columns,
Android determines the number of
columns in the table by finding the row

with the most cells. Android creates a
table with two rows and three columns.
The last column of the first row is an
empty cell.

RELATIVE LAYOUT MANAGER

Another interesting layout manager is RelativeLayout. As the name
suggests, this layout manager implements a policy where the controls in the
container are laid out relative to either the container or another control in the
container. As shown, the UI looks like a
simple login form. The username label is
pinned to the top of the container, because

we set android:layout_alignParentTop to
true. Similarly, the Username input field is
positioned below the Username label
because we set android:layout_below. The
Password label appears below the Username
label, and the Password input field appears

below the Password label. The disclaimer
label is pinned to the bottom of the
container

set
android:layout_alignParentBottom to true.

Besides these three layout

attributes, we can also specify layout_above, layout_toRightOf, layout_toLeftOf,
layout_centerInParent, and several more. Working with RelativeLayout is fun
due to its simplicity. In fact, once we start using it, it’ll become our favorite
layout manager we’ll find our self going back to it over and over again.

FRAME LAYOUT MANAGER

The layout managers that we’ve discussed so far implement various
layout strategies. In other words, each one has a specific way that it positions
and orients its children on the screen. With these layout managers, we can have
many controls on the screen at one time, each taking up a portion of the screen.
Android also offers a layout manager that is mainly used to display a single
item: FrameLayout. We mainly use this utility layout class to dynamically

display a single view, but we can populate it with many items, setting one to
visible while the others are invisible.

As we said earlier, we generally

use FrameLayout when we need to
dynamically set the content of a view to a
single control. Although this is the general
practice, the control will accept many
children, as we demonstrated. Adds two
controls to the layout but has one of the
controls visible at a time. FrameLayout,

however, does not force us to have only
one control visible at a time. If we add
many controls to the layout, FrameLayout
will simply stack the controls, one on top
of the other, with the last one on top. This
can create an interesting UI. For example,

Figure 6–25 shows a FrameLayout control
with two ImageView objects that are
visible. We can see that the controls are
stacked, and that the top one is partially
covering the image behind it.

Another interesting aspect of the FrameLayout is that if we add more
than one control to the layout, the size of the layout is computed as the size of
the largest item in the container, the top image is actually much smaller than
the image behind it, but because the size of the layout is computed based on the
largest control, the image on top is stretched. Also note that if we put many
controls inside a FrameLayout with one or more of them invisible to start, we

might want to consider using setMeasureAllChildren(true) on our FrameLayout.
Because the largest child dictates the layout size, you’ll have a problem if the
largest child is invisible to begin with: when it becomes visible, it is only partially
visible. To ensure that all items are rendered properly, call
setMeasureAllChildren() and pass it a value of true. The equivalent XML
attribute for FrameLayout is android:measureAllChildren="true".

GRID LAYOUT MANAGER
Android 4.0 brought with it a new layout manager called GridLayout.

As we might expect, it lays out views in a grid pattern of rows and columns,
somewhat like TableLayout. However, it’s easier to use than TableLayout. With a
GridLayout, we can specify a row and column value for a view, and that’s where

it goes in the grid. This means we don’t need to specify a view for every cell, just
those that we want to hold a view. Views can span multiple grid cells. We can
even put more than one view into the same grid cell.

When laying out views, we must not use the weight attribute,
because it does not work in child views of a GridLayout. We can use the

layout_gravity attribute instead. Other interesting attributes we can use with

GridLayout child views include layout_column and layout_columnSpan to
specify the left-most column and the number of columns the view takes up,
respectively. Similarly, there are layout_row and layout_rowSpan attributes.

Interestingly, we do not need to specify layout_height and layout_width for
GridLayout child views; they default to WRAP_CONTENT.

