
MODULE IV

ANDROID MENUS

The key class in Android menu support is android.view.Menu. Every
activity in Android is associated with one menu object of this type. The menu
object then contains a number of menu items and submenus. Menu items are
represented by android.view.MenuItem. Submenus are represented by
android.view.SubMenu.

A Menu object contains a set of menu items. A menu item carries the

following attributes:
� Name: A string title
� Menu item ID: An integer
� Group ID: An integer representing which group this item should be part of

� Sort order: An integer identifying the order of this menu item when it is
displayed in the menu.

The name and menu item ID attributes are self explanatory. We can
group menu items together by assigning each one a group ID. Multiple menu
items that carry the same group ID are considered part of the same group. The

sort-order attribute demands a bit of coverage. If one menu item carries an order
number of 4 and another menu item carries a order number of 6, the first menu
item will appear above the second menu item in the menu. Some of these menu
item sort-ordernumber ranges are reserved for certain kinds of menus. These
are called menu categories. The available menu categories are as follows:

� Secondary: Secondary menu items, which are considered less important
� System: This sort-order range is reserved for menu items added by the

Android system.
� Alternative: They’re usually contributed by external applications that

provide alternative ways to deal with the data that is under consideration.
� Container: In Android, the parents of views, such as layouts, are

considered containers. The documentation is not clear about whether this

category pertains to layouts, but it is as good a guess as any. Most likely,
container-related menu items can be placed in this range.

CREATING MENUS
In the Android SDK, we don’t need to create a menu object

from scratch. Because an activity is associated with a single menu,
Android creates this single menu for that activity and passes it to the
onCreateOptionsMenu() callback method of the activity class. (As the
name of the method indicates, menus in Android are also known as
options menus). Starting with 3.0, this method is called as part of
activity creation. This change is due to the fact that the action bar is
always present in an activity. A menu item that we create in this method
for the options menu may sit in an action bar. Because an action bar is
always visible (unlike the options menu), the action bar must know
its menu items from the beginning. So Android cannot wait until the user
opens an options menu to call the onCreateOptionsMenu() method. This
callback menu setup method allows us to populate the single passed-
in menu with a set of menu items (see Listing 7–1).

Listing 7–1. Signature for the onCreateOptionsMenu Method
@Override
public boolean onCreateOptionsMenu(Menu menu) {

// populate menu items
....

...return true; }

Once the menu items are populated, the code should
return true to make the menu visible. If this method returns false,
the menu is invisible. The code in Listing 7–2 shows how to add
three menu items using a single group ID along with incremental
menu item IDs and order IDs.

Listing 7–2. Adding Menu Items
@Override
public boolean onCreateOptionsMenu(Menu menu) {
//call the base class to include system menus
super.onCreateOptionsMenu(menu); menu.add(0 // Group
,1 // item id

,0 //order
,"append"); // title

menu.add(0,2,1,"item2");
menu.add(0,3,2,"clear");
//It is important to return true to see the menu return true;

}

WORKING WITH MENU GROUPS
Following code shows how to work with menu groups. Using Group

IDs to Create Menu Groups

@Override
public boolean onCreateOptionsMenu(Menu menu)
{
//Group 1
int group1 = 1;
menu.add(group1,1,1,"g1.item1");
menu.add(group1,2,2,"g1.item2");

//Group 2
int group2 = 2;
menu.add(group2,3,3,"g2.item1");
menu.add(group2,4,4,"g2.item2");
return true; // it is important to return true
}

Notice how the menu item IDs and the order IDs are independent of
the groups. Android provides a set of methods on the android.view.Menu class
that are based on group IDs. We can manipulate a group’s menu items using
these methods:

� removeGroup(id):- removes all menu items from that group, given the

group ID.
� setGroupCheckable(id, checkable, exclusive):- We can use this method to

show a check mark on a menu item when that menu item is selected.
� setGroupEnabled(id,boolean enabled):- We can enable or disable menu

items in a given group
� setGroupVisible(id,visible):- we can control the visibility of a group of menu

items

RESPONDING TO MENU ITEMS
There are multiple ways of responding to menu item clicks in

Android. We can use the onOptionsItemSelected() method of the activity class; we
can use stand-alone listeners, or we can use intents.

a) Through onOptionsItemSelected()
When a menu item is clicked, Android calls the
onOptionsItemSelected() callback method on the Activity class.
Listing 7–4. Signature and Body of the onOptionsItemSelected

Method
@Override
public boolean onOptionsItemSelected(MenuItem item) {

switch(item.getItemId()) {
....

//for items handled
return true;

//for the rest
...return super.onOptionsItemSelected(item); } }

The key pattern here is to examine the menu item ID through the
getItemId() method of the MenuItem class and do what’s necessary. If
onOptionsItemSelected() handles a menu item, it returns true. The menu event

will not be further propagated. For the menu item callbacks that
onOptionsItemSelected() doesn’t deal with, onOptionsItemSelected() should call
the parent method through super.onOptionsItemSelected(). The default
implementation of the onOptionsItemSelected() method returns false so that the

normal processing can take place. Normal processing includes alternative means
of invoking responses for a menu.

b) Through Listeners
A listener implies object creation and a registry of the listener. So this is the

overhead that the performance refers to in the first sentence of this paragraph.
However, we may choose to give more importance to reuse and clarity, in which
case listeners provide flexibility. This approach is a two-step process. In the first
step, we implement the OnMenuClickListener interface. Then, we take an
instance of this implementation and pass it to the menu item. When the menu
item is clicked, the menu item calls the onMenuItemClick() method of the

OnMenuClickListener interface.
Listing 7–5. Using a Listener as a Callback for a Menu Item Click

//Step 1
public class MyResponse implements OnMenuClickListener
{

//some local variable to work on
//...
//Some constructors
@override
boolean onMenuItemClick(MenuItem item)
{

//do our thing
return true;
}

}
//Step 2
MyResponse myResponse = new MyResponse(...);

menuItem.setOnMenuItemClickListener(myResponse);
...

The onMenuItemClick() method is called when the menu item has been invoked.
This code executes as soon as the menu item is clicked, even before the

onOptionsItemSelected() method is called. If onMenuItemClick() returns true, no
other callbacks are executed—including the onOptionsItemSelected() callback
method. This means that the listener code takes precedence over the
onOptionsItemSelected() method.

c) Using Intent
We can also associate a menu item with an intent by using the MenuItem’s
method setIntent(intent). By default, a menu item has no intent associated with

it. But when an intent is associated with a menu item, and nothing else handles
the menu item, then the default behavior is to invoke the intent using
startActivity(intent).

ICON MENU

Android supports not only text but also images or icons as part of its
menu repertoire. We can use icons to represent menu items instead of and in
addition to text. Note a few limitations when it comes to using icon menus.

1) we can’t use icon menus for expanded menus. This restriction may be
lifted in the future, depending on device size and SDK support. Larger

devices may allow this functionality, whereas smaller devices may keep the
restriction.

2) Icon menu items do not support menu item check marks.
3) If the text in an icon menu item is too long, it’s truncated after a certain

number of characters, depending on the size of the display. (This last
limitation applies to text based menu items also).

Creating an icon menu item is straightforward. We create a regular
text-based menu item as before, and then we use the setIcon() method on the
MenuItem class to set the image. We need to use the image’s resource ID, so we
must generate it first by placing the image or icon in the /res/drawable

directory. For example, if the icon’s file name is balloons, then the resource ID is
R.drawable.balloons.

SUB MENU
A Menu object can have multiple SubMenu objects. Each SubMenu

object is added to the Menu object through a call to the Menu.addSubMenu()
method. We add menu items to a submenu the same way that we add menu
items to a menu. This is because SubMenu is also derived from a Menu object.
However, we cannot add additional submenus to a submenu.

Listing 7–7. Adding Submenus
private void addSubMenu(Menu menu)
{

//Secondary items are shown just like everything else
int base=Menu.FIRST + 100;

SubMenu sm =
menu.addSubMenu(base,base+1,Menu.NONE,"submenu");
sm.add(base,base+2,base+2,"sub item1");
sm.add(base,base+3,base+3,"sub item2");
sm.add(base,base+4,base+4,"sub item3");
//submenu item icons are not supported

item1.setIcon(R.drawable.icon48x48_2);

//the following is ok however
sm.setIcon(R.drawable.icon48x48_1);
//This will result in runtime exception

//sm.addSubMenu("try this");

}
NOTE: SubMenu, as a subclass of the Menu object, continues to carry the
addSubMenu() method. The compiler won’t complain if we add a submenu to
another submenu, but we’ll get a runtime exception if we try to do it.

The Android SDK documentation also suggests that submenus do
not support icon menu items. When we add an icon to a menu item and then
add that menu item to a submenu, the menu item ignores that icon, even if we
don’t see a compile-time or runtime error. However, the submenu itself can have
an icon.

CONTEXT MENU
In Windows applications, for example, we can access a context menu

by right-clicking a UI element. Android supports the same idea of context menus
through an action called a long click. A long click is a mouse click held down
slightly longer than usual on any Android view. On handheld devices such as

cell phones, mouse clicks are implemented in a number of ways, depending on
the navigation mechanism. If our phone has a wheel to move the cursor, a press
of the wheel serves as the mouse click. Or if the device has a touch pad, a tap or
a press is equivalent to a mouse click. Or we might have a set of arrow buttons
for movement and a selection button in the middle; clicking that button is
equivalent to clicking the mouse. Regardless of how a mouse click is

implemented on our device, if we hold the mouse click a bit longer, we realize
the long click.

Although a context menu is owned by a view, the method to populate
context menus resides in the Activity class. This method is called
activity.onCreateContextMenu(), and its role resembles that of the

activity.onCreateOptionsMenu() method. This callback method also carries with
it (as an argument to the method) the view for which the context menu items are
to be populated. The steps to implement a context menu:

1) Register a view for a context menu in an activity’s onCreate() method.
2) Populate the context menu using onCreateContextMenu(). We must

complete step 1 before this callback method is invoked by Android.

3) Respond to context menu clicks.

DYNAMIC MENUS
If we want to create dynamic menus, use the onPrepareOptionsMenu()

method that Android provides on an activity class. This method resembles

onCreateOptionsMenu() except that it is called every time a menu is invoked. We
should use onPrepareOptionsMenu() if we want to disable some menu items or
menu groups based on what we are displaying. For 3.0 and above, we have to
explicitly call a new provisioned method called invalidateOptionsMenu(), which in

turn invokes the onPrepareOptionsMenu(). We can call this method any time
something changes in our application state that would require a change to the
menu.

LOADING MENU THROUGH XML
We have created all our menus programmatically. This is not the

most convenient way to create menus, because for every menu, we have to
provide several IDs and define constants for each of those IDs. No doubt this is
tedious. Instead, we can define menus through XML files, which is possible in
Android because menus are also resources. The XML approach to menu creation
offers several advantages, such as

� he ability to name menus

� Order them automatically
� Give them IDs
� We can also get localization support for the menu text.

Follow these steps to work with XML-based menus:
1. Define an XML file with menu tags.
2. Place the file in the /res/menu subdirectory. The name of the file is

arbitrary, and we can have as many files as we want. Android
automatically generates a resource ID for this menu file.

3. Use the resource ID for the menu file to load the XML file into the menu.
4. Respond to the menu items using the resource IDs generated for each

menu item.

POPUP MENUS
SDK 4.0 enhanced this slightly by adding a couple of utility methods

(for example, PopupMenu.inflate) to the PopupMenu class. A pop-up menu can be
invoked against any view in response to a UI event. An example of a UI event is a

button click or a click on an image view. Figure 7–4 shows a pop-up menu
invoked against a view.

To create a pop-up menu like the one in Figure 7–4, start with a regular XML
menu file as shown in Listing 7–18.
Listing 7–18. A Sample XML File for a Pop-up Menu

<menu xmlns:android="http://schemas.android.com/apk/res/android">

<!-- This group uses the default category. -->
<group android:id="@+id/menuGroup_Popup">

<item android:id="@+id/popup_menu_1"
android:title="Menu 1" />

<item android:id="@+id/popup_menu_2"
android:title="Menu 2" />

</group>
</menu>

Assuming the code in Listing 7–18 is in a file called
popup_menu.xml. As we can see, a pop-up menu behaves much like an options
menu. The key differences are as follows:

� A pop-up menu is used on demand, whereas an options menu is always
available.

� A pop-up menu is anchored to a view, whereas an options menu belong to
the entire activity.

� A pop-up menu uses its own menu item callback, whereas the options
menu uses the onOptionsItemSelected() callback on the activity.

FRAGMENTS IN ANDROID

A fragment is a piece of activity which enable more modular activity
design. It will not be wrong if we say a fragment is a kind of sub-activity. A
fragment has its own layout and behavior with life cycle. We can add or remove
fragments in an activity while the activity is running. We can combine multiple
fragments in a single activity to build a multi-plane UI. A fragment can be used
in multiple activities. A fragment can implement a behavior that has no user

interface component. Fragments were added to the android version HoneyComb
with API 11.0

STRUCTURE OF FRAGMENT
A fragment is like a sub-activity: it has a fairly specific purpose and

almost always displays a user interface. But where an activity is sub-classed
below Context, a fragment is extended from Object in package android.app. A
fragment is not an extension of Activity. A fragment can have a view hierarchy to
engage with a user. It can be created (inflated) from an XML layout specification
or created in code. A fragment has a bundle that serves as its initialization
arguments.

FRAGMENT LIFE CYCLE

A fragment is very dependent on the activity in which it lives and can
go through multiple steps while its activity goes through one.

FRAGMENT MANAGER
The FragmentManager is a component that takes care

of the fragments belonging to an activity. This includes fragments on
the back stack and fragments that may just be hanging around.
Fragments should only be created within the context of an activity.
The FragmentManager class is used to access and manage these
fragments for an activity. Besides getting a fragment transaction, we
can also get a fragment using the fragment’s ID, its tag, or a
combination of bundle and key. For this, the getter methods
include findFragmentById(), findFragmentByTag(), and getFragment(). The
getFragment() method would be used in conjunction with
putFragment(), which also takes a bundle, a key, and the fragment to
be put.

The bundle is most likely going to be the savedState
bundle, and putFragment() will be used in the onSaveInstanceState()
callback to save the state of the current activity (or another
fragment). The getFragment() method would probably be called in
onCreate() to correspond to putFragment(), although for a fragment,
the bundle is available to the other callback methods, as
described earlier. Obviously, we can’t use the getFragmentManager()
method on a fragment that has not been attached to an activity yet.
But it’s also true that we can attach a fragment to an activity
without making it visible to the user yet. If we do this, we should
associate a String tag to the fragment so we can get to it in the
future. We’d most likely use this method of FragmentTransaction to
do this:

public FragmentTransaction add (Fragment fragment, String tag)

The fragment back stack is also the domain of the fragment
manager. Whereas a fragment transaction is used to put fragments onto the
back stack, the fragment manager can take fragments off the back stack. This is
usually done using the fragment’s ID or tag, but it can be done based on
position in the back stack or just to pop the top-most fragment. Finally, the
fragment manager has methods for some debugging features, such as turning

on debugging messages to LogCat using enableDebugLogging() or dumping the
current state of the fragment manager to a stream using dump().

SAVING FRAGMENT STATE
Another interesting class was introduced in Android 3.2:

Fragment.SavedState. Using the saveFragmentInstanceState() method of

FragmentManager, we can pass this method a fragment, and it returns an object

representing the state of that fragment. We can then use that object when
initializing a fragment, using Fragment’s setInitialSavedState() method.

PERSISTENCE OF FRAGMENTS
When we play with this sample application, make sure we rotate the

device (pressing Ctrl+F11 rotates the device in the emulator). We will see that
the device rotates, and the fragments rotate right along with it. If we watch the
LogCat messages, we will see a lot of them for this application. During a device
rotation, pay careful attention to the messages about fragments; not only does
the activity get destroyed and recreated, but the fragments do also.

So far, we only wrote a tiny bit of code on the titles fragment to
remember the current position in the titles list across restarts. We didn’t do
anything in the details fragment code to handle reconfigurations, and that’s
because we didn’t need to. Android will take care of hanging onto the fragments
that are in the fragment manager, saving them away, and then restoring them

when the activity is being re-created. We should realize that the fragments we
get back after the reconfiguration is complete are very likely not the same
fragments in memory that we had before. These fragments have been
reconstructed for we. Android saved the arguments bundle and the knowledge of
which type of fragment it was, and it stored the saved-state bundles for each
fragment that contain saved-state information about the fragment to use to

restore it on the other side.

COMMUNICATIONS WITH FRAGMENTS
The fragment manager knows about all fragments attached to the

current activity, the activity or any fragment in that activity can ask for any
other fragment using the getter methods described earlier. Once the fragment

reference has been obtained, the activity or fragment could cast the reference
appropriately and then call methods directly on that activity or fragment. This
would cause our fragments to have more knowledge about the other fragments
than might normally be desired, but don’t forget that we’re running this
application on a mobile device, so cutting corners can sometimes be justified.
A code snippet is provided in Listing 8–12 to show how one fragment might

communicate directly with another fragment.
Listing 8–12. Direct Fragment-to-Fragment Communication

FragmentOther fragOther =
(FragmentOther)getFragmentManager().findFragmentByTag(“other”);
fragOther.callCustomMethod(arg1, arg2);

In Listing 8–12, the current fragment has direct knowledge of the class of the
other fragment and also which methods exist on that class. This may be okay
because these fragments are part of one application, and it can be easier to
simply accept the fact that some fragments will know about other fragments.

STARTACTIVITY() AND SETTARGETFRAGMENT()
A feature of fragments that is very much like activities is the ability

of a fragment to stat an activity. Fragment has a startActivity() method and

startActivityForResult() method. These work just like the ones for activities;
when a result is passed back, it will cause the onActivityResult() callback to fire
on the fragment that started the activity. There’s another communication
mechanism we should know about. When one fragment wants to start another
fragment, there is a feature that lets the calling fragment set its identity with the
called fragment. The following example of what it might look like.
Listing 8–13. Fragment-to-Target-Fragment Setup

mCalledFragment = new CalledFragment();
mCalledFragment.setTargetFragment(this, 0);
fm.beginTransaction().add(mCalledFragment, "work").commit();

With these few lines, we’ve created a new CalledFragment object, set

the target fragment on the called fragment to the current fragment, and added
the called fragment to the fragment manager and activity using a fragment
transaction. When the called fragment starts to run, it will be able to call
getTargetFragment(), which will return a reference to the calling fragment. With
this reference, the called fragment could invoke methods on the calling fragment
or even access view components directly. For example, the called fragment could

set text in the UI of the calling fragment directly.
Listing 8–14. Target Fragment-to-Fragment Communication

TextView tv = (TextView)
getTargetFragment().getView().findViewById(R.id.text1);
tv.setText(“Set from the called fragment”);

USING DIALOGS IN ANDROID
The Android SDK offers extensive support for dialogs. A dialog is a

smaller window that pops up in front of the current window to show an urgent
message, to prompt the user for a piece of input, or to show some sort of status
like the progress of a download. The user is generally expected to interact with

the dialog and then return to the window underneath to continue with the
application. Android allows a dialog fragment to also be embedded within an
activity’s layout. Dialogs that are explicitly supported in Android include the
alert, prompt, pick-list, single-choice, multiple-choice, progress, time-picker,
and date-picker dialogs.

Dialogs in Android are asynchronous, which provides flexibility.
However, if we are accustomed to a programming framework where dialogs are
primarily synchronous (such as Microsoft Windows, or JavaScript dialogs in web
pages), we might find asynchronous dialogs a bit unintuitive. With a
synchronous dialog, the line of code after the dialog is shown does not run until
the dialog has been dismissed. This means the next line of code could

interrogate which button was pressed, or what text was typed into the dialog. In

Android however, dialogs are asynchronous. As soon as the dialog has been
shown, the next line of code runs, even though the user hasn’t touched the
dialog yet. Our application has deal with this fact by implementing callbacks

from the dialog, to allow the application to be notified of user interaction with
the dialog.

This also means our application has the ability to dismiss the dialog
from code, which is powerful. If the dialog is displaying a busy message because
our application is doing something, as soon as our application has completed
that task, it can dismiss the dialog from code.

DIALOG FRAGMENTS
The use of dialog fragments is to present a simple alert dialog and a

custom dialog that is used to collect prompt text. Dialog-related functionality
uses a class called DialogFragment. A DialogFragment is derived from the class
Fragment and behaves much like a fragment. We will then use the

DialogFragment as the base class for our dialogs. Once we have a derived dialog
from this class such as

public class MyDialogFragment extends DialogFragment { ... }

we can then show this dialog fragment MyDialogFragment as a dialog
using a fragment transaction. Following example shows a code snippet to
do this. Listing 9–1. Showing a Dialog Fragment

SomeActivity
{
//..other activity functions
public void showDialog()

{
//construct MyDialogFragment
MyDialogFragment mdf = MyDialogFragment.newInstance(arg1,arg2);
FragmentManager fm = getFragmentManager(); FragmentTransaction ft =
fm.beginTransaction();
mdf.show(ft,"my-dialog-tag");

}
// ...other activity functions
}

The steps to show a dialog fragment are as follows:
1. Create a dialog fragment.
2. Get a fragment transaction.

3. Show the dialog using the fragment transaction from step 2.

WORKING WITH TOAST
The alert messages are commonly used for debugging

JavaScript on error pages. If we are pressed to use a similar

approach for infrequent debug messages, we can use the Toast object in

Android. A Toast is like an alert dialog that has a message and displays

for a certain amount of time and then goes

away. It does not have any buttons. So it can be said that it is a transient alert
message. It’s called Toast because it pops up like toast out of a toaster. The
following example shows an example of how we can show a message using

Toast.
Listing 9–10. Using Toast for Debugging

//Create a function to wrap a message as a toast
//show the toast
public void reportToast(String message)
{
String s = MainActivity.LOGTAG + ":" + message;

Toast.makeText(activity, s, Toast.LENGTH_SHORT).show();
}

The makeText() method in Listing 9–10 can take not only an activity
but any context object, such as the one passed to a broadcast receiver or a
service, for example. This extends the use of Toast outside of activities.

IMPLEMENTING ACTION BAR
ActionBar was introduced in the Android 3.0 SDK for tablets and is

now available for phones as well in 4.0. It allows we to customize the title bar of
an activity. Prior to the 3.0 SDK release, the title bar of an activity merely
contained the title of an activity. Android ActionBar is modeled similar to the

menu/title bar of a web browser. An action bar is owned by an activity and
follows its lifecycle. An action bar can take one of three forms: tabbed action
bar, list action bar, or standard action bar. We see how these various action
bars look and behave in each of the modes.

Home Icon area: The icon at upper left on the action bar is sometimes

called the Home icon. This is similar to a web site navigation context, where
clicking the Home icon takes we to a starting point. When we transfer the user
to the home activity, don’t start a new home activity; instead, transfer to it by
using an intent flag that clears the stack of all activities on top of the home
activity. We see later that clicking this Home icon sends a callback to the option
menu with menu ID android.R.id.home.

� Title area: The Title area displays the title for the action bar.
� Tabs area: The Tabs area is where the action bar paints the list of tabs

specified. The content of this area is variable. If the action bar navigation
mode is tabs, then tabs are shown here. If the mode is listnavigation mode,
then a navigable list of drop-down items is shown. In standard mode, this

area is ignored and left empty.
� Action Icon area: Following the Tabs area, the Action Icon area shows

some of the option menu items as icons. We see how to choose which
option menus are displayed as action icons in the example later.

� Menu Icon area: Last is the Menu Icon area. It is a single standard menu
icon. When we click this menu icon, we see the expanded menu. This

expanded menu looks different or shows up in a different location

depending on the size of the Android device. We can also attach a search
view as if it is an action icon of the menu.

Figure 10–1 shows a typical action bar in tabbed navigation mode.

TABBED NAVIGATION ACTION BAR ACTIVITY
Each of the action bar divided into separate tabs. Each tab contains

their own activities. The common behavior in a base class and allow each of the
derived activities, including this tabbed action bar activity, to configure the
action bar. The difficult to explain these common files without the context of at
least one action bar activity. Following is a list of files that are needed for this
tabbed action bar:

� DebugActivity.java: Base class activity that allows for a debug text view as
shown in Figure 10-1 (Listing 10-2)

� BaseActionBarActivity.java: Derived from DebugActivity and allows for
common navigation (such as responding to common actions including
switching between the three activities) (Listing 10-3)

� IReportBack.java: An interface that works as a communication vehicle

between the debug activity and the various listeners of the action bar
(Listing 10-1)

� BaseListener.java: Base listener class that works with the DebugActivity
and the various actions that gets invoked from the action bar. Acts as a
base class for both tab listeners and list navigation listeners (Listing 10-4)

� TabNavigationActionBarActivity.java: inherits from

BaseActionBarActivity.java and configures the action bar as a tabbed

action bar. Most of the code pertaining to the tabbed action bar is in this
class (Listing 10-6)

� TabListener.java: Required to add a tab to the tabbed action bar. This

where we respond to tab clicks. In our case this simply logs a message to
the debug view through the BaseListener (Listing 10-5)

� AndroidManifest.xml: Where activities are defined to be invoked (Listing
10-13)

� Layout/main.xml: Layout file for the DebugActivity. Because all the three
status bar activities inherit this base DebugActivity, they all share this
layout file (Listing 10-7)

� menu/menu.xml: A set of menu items to test the menu interaction with
the action bar. The menu file is also shared across all the derived status
bar activities (Listing 10-9)

IMPLEMENTING BASE ACTIVITY CLASSES
A number of the base classes use the IReportBack interface. It is introduced in

Listing 10–1. IReportBack.java
//IReportBack.java
package com.androidbook.actionbar;
public interface IReportBack
{

public void reportBack(String tag, String message);

public void reportTransient(String tag, String message);
}

A class that implements this interface takes a message and reports it
on a screen, like a debug message. This is done through the reportBack()
method. The method reportTransient() does the same thing except it uses a

Toast to report that message to the user. In this example, the class that
implements IReportBack is DebugActivity. This allows DebugActivity to pass
itself around without exposing all of its internals. The source code for
DebugActivity is presented in
Listing 10–2. DebugActivity with a Debug Text View

//DebugActivity.java

package com.androidbook.actionbar;
//
//Use CTRL-SHIFT-O to import dependencies
//
public abstract class DebugActivity extends Activity implements IReportBack
{

//Derived classes needs first protected abstract boolean
onMenuItemSelected(MenuItem item);
//private variables set by constructor
private static String tag=null;
private int menuId = 0;
private int layoutid = 0;

private int debugTextViewId = 0;

public DebugActivity(int inMenuId, int inLayoutId, int inDebugTextViewId,
String inTag)
{

tag = inTag;
menuId = inMenuId;
layoutid = inLayoutId;
debugTextViewId = inDebugTextViewId;
}
@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
setContentView(this.layoutid);
//We need the following to be able to scroll
//the text view.
TextView tv = this.getTextView();
tv.setMovementMethod(

ScrollingMovementMethod.getInstance());
}
@Override
public boolean onCreateOptionsMenu(Menu menu){
super.onCreateOptionsMenu(menu);
MenuInflater inflater = getMenuInflater();

inflater.inflate(menuId, menu);
return true;
}
@Override
public boolean onOptionsItemSelected(MenuItem item){
appendMenuItemText(item);

if (item.getItemId() == R.id.menu_da_clear){
this.emptyText();
return true;
}
boolean b = onMenuItemSelected(item);
if (b == true)

{
return true;
}
return super.onOptionsItemSelected(item);
}
protected TextView getTextView(){

return
(TextView)this.findViewById(this.debugTextViewId);
}
protected void appendMenuItemText(MenuItem menuItem){
String title = menuItem.getTitle().toString();
appendText("MenuItem:" + title);

}

protected void emptyText(){
TextView tv = getTextView();
tv.setText("");

}
protected void appendText(String s){
TextView tv = getTextView();
tv.setText(s + "\n" + tv.getText());
Log.d(tag,s);
}
public void reportBack(String tag, String message)

{
this.appendText(tag + ":" + message);
Log.d(tag,message);
}
public void reportTransient(String tag, String message)
{

String s = tag + ":" + message;
Toast mToast =
Toast.makeText(this, s, Toast.LENGTH_SHORT);
mToast.show();
reportBack(tag,message);
Log.d(tag,message);

}
}//eof-class

The primary goal of this base activity class is to present an activity
with a debug text view in it. This text view is used to log messages coming from
the reportBack() method. We use this activity as the base activity for all of the
action bar activities.

TABBED LISTENER
Before we are able to work with a tabbed action bar, we need a

tabbed listener. A tabbed listener allows we to respond to the click events on the
tabs. We derive our tabbed listener from a base listener that allows we to log tab
actions. Listing 10–4 shows the base listener that uses the IReportBack for

logging.
Listing 10–4. A Common Listener for Action Bar Enabled Activities

//BaseListener.java
package com.androidbook.actionbar;
//Use CTRL-SHIFT-O to import dependencies
public class BaseListener

{
protected IReportBack mReportTo;
protected Context mContext;
public BaseListener(Context ctx, IReportBack target)
{
mReportTo = target;

mContext = ctx; } }

This base class holds a reference to an implementation of
IReportBack and also the activity that can be used as a context. This tabbed
listener documents the callbacks from the action bar tabs to the debug text. In

this case, the DebugActivity from Listing 10–2 is the implementer of IReportBack
and also plays the role of the context. Now that we have a base listener, Listing
10–5 shows the tabbed listener.
Listing 10–5. Tab Listener to Respond to Tab Actions

// TabListener.java
package com.androidbook.actionbar;
//

//Use CTRL-SHIFT-O to import dependencies
//
public class TabListener extends BaseListener
implements ActionBar.TabListener
{
private static String tag = "tc>";

public TabListener(Context ctx,
IReportBack target)
{
super(ctx, target);
}
public void onTabReselected(Tab tab,

FragmentTransaction ft)
{
this.mReportTo.reportBack(tag,
"ontab re selected:" + tab.getText());
}
public void onTabSelected(Tab tab,

FragmentTransaction ft)
{
this.mReportTo.reportBack(tag,
"ontab selected:" + tab.getText());
}
public void onTabUnselected(Tab tab,

FragmentTransaction ft)
{
this.mReportTo.reportBack(tag,
"ontab un selected:" + tab.getText());
}
}

This tabbed listener documents the callbacks from the action bar
tabs to the debug text view of Figure 10–1.

TABBED ACTION BAR
With the tabbed listener in place, we can finally construct the tabbed

navigation activity. This is presented in Listing 10–6.

Listing 10–6. Tab-Navigation Enabled Action Bar Activity
// TabNavigationActionBarActivity.java
package com.androidbook.actionbar;

//Use CTRL-SHIFT-O to import dependencies
public class TabNavigationActionBarActivity
extends BaseActionBarActivity
{
private static String tag =
"Tab Navigation ActionBarActivity";
public TabNavigationActionBarActivity()

{
super(tag);
}
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
workwithTabbedActionBar();
}
public void workwithTabbedActionBar()
{
ActionBar bar = this.getActionBar();

bar.setTitle(tag);
bar.setNavigationMode(
ActionBar.NAVIGATION_MODE_TABS);
TabListener tl = new TabListener(this,this);
Tab tab1 = bar.newTab();
tab1.setText("Tab1");

tab1.setTabListener(tl);
bar.addTab(tab1);
Tab tab2 = bar.newTab();
tab2.setText("Tab2");
tab2.setTabListener(tl);
bar.addTab(tab2);

}
}//eof-class

We now look at the code for this activity (Listing 10–6) in the
following subsections, which draw attention to each aspect of working with a
tabbed action bar. We start with getting access to the action bar belonging to an
activity.

DEBUG TEXT VIEW LAYOUT
As the tabs of the action bar are clicked, the tab listeners are set up

in such a way that debug messages are sent to the debug text view. Listing 10–7
shows the layout file for the DebugActivity, which in turn contains the debug
text view.

Listing 10–7. Debug Activity Text View Layout File

<?xml version="1.0" encoding="utf-8"?>
<!-- /res/layout/main.xml -->
<LinearLayout

xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:gravity="fill"
>

<TextView android:id="@+id/textViewId"

android:layout_width="fill_parent"
android:layout_height="fill_parent"
android:background="@android:color/white"
android:text="Initial Text Message"
android:textColor="@android:color/black"
android:textSize="25sp"

android:scrollbars="vertical"
android:scrollbarStyle="insideOverlay"
android:scrollbarSize="25dip"
android:scrollbarFadeDuration="0"
/>

</LinearLayout>
There are a few things worth noting about this layout. We set the

background color of the text view to white. This lets we capture screens in
brighter light. The text size is also set to a large font to aid screen capture. We
also set up the text view so that it is enabled for scrolling. Although typically
layouts use ScrollView, a text view is already enabled for scrolling by itself. In

addition to enabling the scrolling properties in the XML file for the text view, we
need to call the setMovementMethod() method on the text view as shown in
Listing 10–8. Enabling Text View for Scrolling

TextView tv = this.getTextView();
tv.setMovementMethod(
ScrollingMovementMethod.getInstance());

This code is extracted from the DebugActivity (Listing 10–2).
As the text view is scrolled, notice that the scrollbar appears and then fades
away. This is not a good indicator if there is text beyond visible range. We can
tell the scrollbar to stay by setting the fade duration to 0. See Listing 10–7 for
how to set this parameter.

ACTION BAR AND MENU INTERACTION
This example also demonstrates how menus interact with the action

bar. So, we need to set up a menu file. This file is presented in Listing 10–9.

Listing 10–9. Menu XML File for This Project
<!-- /res/menu/menu.xml -->
<menu
xmlns:android="http://schemas.android.com/apk/res/android">
<!-- This group uses the default category. -->
<group android:id="@+id/menuGroup_Main">
<item android:id="@+id/menu_action_icon1"

android:title="Action Icon1"
android:icon="@drawable/creep001"
android:showAsAction="ifRoom"/>

<item android:id="@+id/menu_action_icon2"
android:title="Action Icon2"
android:icon="@drawable/creep002"

android:showAsAction="ifRoom"/>
<item android:id="@+id/menu_icon_test"

android:title="Icon Test"
android:icon="@drawable/creep003"/>

<item android:id="@+id/menu_invoke_listnav"
android:title="Invoke List Nav"

/>
<item android:id="@+id/menu_invoke_standardnav"

android:title="Invoke Standard Nav"
/>

<item android:id="@+id/menu_invoke_tabnav"
android:title="Invoke Tab Nav"

/>
<item android:id="@+id/menu_da_clear"

android:title="clear" />
</group>
</menu>

LIST NAVIGATION ACTION BAR ACTIVITY
Because our base classes are carrying the most of the work, it is

fairly easy to implement and test the list action bar navigation activity. We need
the following additional files to implement this activity:

� SimpleSpinnerArrayAdapter.java: Needed to set up the list navigation bar

along with the listener. This class provides the rows required by a drop-
down navigation list (Listing 10–12).

� ListListener.java: Acts as a listener to the list navigation activity. This class
needs to be passed to the action bar when setting it up as a list action bar
(Listing 10–13).

� ListNavigationActionBarActivity.java: Implements the list navigation action

bar activity (Listing 10–14).

Once we have these three new files, we need to update the following two files:
� BaseActionBarActivity.java: Uncomment the invocation of the list action

bar activity (Listing 10–3).
� AndroidManifest.xml: Define the new list navigation action bar activity in

the manifest file (Listing 10–11).

SPINNER ADAPTER
To be able to initialize the action bar with list navigation mode, we

need the following two things:

� A spinner adapter that can tell the list navigation what the list of
navigation text is

� A list navigation listener so that when one of the list items is picked we
can get a call back

Listing 10–12 presents the SimpleSpinnerArrayAdapter that implements the
SpinnerAdapter interface. the goal of this class is to give a list of items to show.
Listing 10–12. Creating a Spinner Adapter for List Navigation

//SimpleSpinnerArrayAdapter.java
package com.androidbook.actionbar;
//Use CTRL-SHIFT-O to import dependencies
public class SimpleSpinnerArrayAdapter
extends ArrayAdapter<String>
implements SpinnerAdapter

{
public SimpleSpinnerArrayAdapter(Context ctx)
{
super(ctx,
android.R.layout.simple_spinner_item,
new String[]{"one","two"});

this.setDropDownViewResource(
android.R.layout.simple_spinner_dropdown_item);
}
public View getDropDownView(
int position, View convertView, ViewGroup parent)
{

return super.getDropDownView(
position, convertView, parent);
}
}

There is no SDK class that directly implements the SpinnerAdapter
interface required by list navigation. So, we derive this class from an

ArrayAdapter and provide a simple implementation for the SpinnerAdapter. At
the end of the chapter is a reference URL on spinner adapters for further
reading. Let’s move on now to the list navigation listener.

LIST LISTENER
This is a simple implementing the ActionBar.OnNavigationListener.

Listing 10–13 shows the code for this class.
Listing 10–13. Creating a List Listener for List Navigation

//ListListener.java
package com.androidbook.actionbar;
//Use CTRL-SHIFT-O to import dependencies
public class ListListener

extends BaseListener

implements ActionBar.OnNavigationListener
{
public ListListener(

Context ctx, IReportBack target)
{
super(ctx, target);
}
public boolean onNavigationItemSelected(
int itemPosition, long itemId)
{

this.mReportTo.reportBack(
"list listener","ItemPostion:" + itemPosition);
return true;
}
}

Like the tabbed listener in Listing 10–5, we inherit from our

BaseListener so that we can log events to the debug text view through the
IReportBack interface.

LIST ACTION BAR
We now have what we require to set up a list navigation action bar.

The source code for the list navigation action bar activity is shown in Listing 10–

14. This class is very similar to the tabbed activity we coded earlier.

Listing 10–14. List Navigation Action Bar Activity
// ListNavigationActionBarActivity.java
package com.androidbook.actionbar;

//Use CTRL-SHIFT-O to import dependencies
public class ListNavigationActionBarActivity
extends BaseActionBarActivity
{
private static String tag=
"List Navigation ActionBarActivity";
public ListNavigationActionBarActivity()

{
super(tag);
}
@Override
public void onCreate(Bundle savedInstanceState)
{

super.onCreate(savedInstanceState);
workwithListActionBar();
}
public void workwithListActionBar()
{
ActionBar bar = this.getActionBar();

bar.setTitle(tag);
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_LIST);
bar.setListNavigationCallbacks(
new SimpleSpinnerArrayAdapter(this),
new ListListener(this,this));
}

}//eof-class

The important code is highlighted in Listing 10–14. The code is quite
simple: we take a spinner adapter and a list listener and set them as list
navigation callbacks on the action bar.

STANDARD NAVIGATION ACTION BAR ACTIVITY
The nature of a standard navigation action bar. We set up an activity

and set its action bar navigation mode as standard. We then see what the
standard navigation looks like and examine its behavior. As in the case of
ListNavigationActionBarActivity, because our base classes are carrying most of

the work, it is easy to implement and test the standard action bar navigation
activity. We need the following additional file:

� StandardNavigationActionBarActivity.java: This is the implementation file
for configuring the action bar as a standard navigation mode action bar
(Listing 10–17).

We also need to update the following two files:

� BaseActionBarActivity.java: Uncomment the invocation of the standard
action bar activity in response to a menu item (see Listing 10–18 for
changes and Listing 10–3 for the original file).

� AndroidManifest.xml: Define this new activity in the manifest file (see
Listing 10–19 for this activity’s definition so we can add this to the main
Android manifest file in Listing 10–11).

We used tabbed listeners while setting up the tabbed action bar and list
listeners for setting up the list navigation action bar. For a standard action bar,
there are no listeners other than the menu callbacks. The menu callbacks don’t
need to be specially set up because they are hooked up automatically by the
SDK. As a result, it is quite easy to set up the action bar in the standard

navigation mode. Listing 10–17 presents the source code for the standard
navigation action bar activity.
Listing 10–17. Standard Navigation Action Bar Activity

//StandardNavigationActionBarActivity.java
package com.androidbook.actionbar;
//Use CTRL-SHIFT-O to import dependencies
public class StandardNavigationActionBarActivity
extends BaseActionBarActivity
{
private static String tag=

"Standard Navigation ActionBarActivity";
public StandardNavigationActionBarActivity()
{
super(tag);
}
@Override

public void onCreate(Bundle savedInstanceState)
{
super.onCreate(savedInstanceState);
workwithStandardActionBar();
}
public void workwithStandardActionBar()

{
ActionBar bar = this.getActionBar();
bar.setTitle(tag);
bar.setNavigationMode(ActionBar.NAVIGATION_MODE_STANDARD);
//test to see what happens if we were to attach tabs
attachTabs(bar);

}
public void attachTabs(ActionBar bar)
{
TabListener tl = new TabListener(this,this);
Tab tab1 = bar.newTab();
tab1.setText("Tab1");

tab1.setTabListener(tl);
bar.addTab(tab1);
Tab tab2 = bar.newTab();
tab2.setText("Tab2");
tab2.setTabListener(tl);
bar.addTab(tab2);

}
}//eof-class

The only thing necessary to set up an action bar as a standard
navigation action bar is to set its navigation mode as such. That portion of the
code is highlighted in Listing 10– 17.

ACTION BAR AND SEARCH VIEW

In Android 4.0, because the action bar is available on phones, there
is an increasing interest in using it as a search facility. This section shows how
to use a search widget in the action bar. We will provide code snippets that we
can use to modify the project we have seen so far to include a search widget.
Although we present only snippets, we can see the full code in the downloadable
project for this chapter. A search view widget is a search box that fits between

our tabs and the menu icons in the action bar, as shown in Figure 10–7.

We need to do the following to use search in our action bar:
1. Define a menu item pointing to a search view provided by the SDK. We

also need an activity into which we can load this menu. This is often called
the search invoker activity.

2. Create another activity that can take the query from the search view in

step 1 and provide results. This is often called the search results activity.
3. Create an XML file that allows we to customize the search view widget.

4. This file is often called searchable.xml and resides in the res/xml
subdirectory.

5. Declare the search results activity in the manifest file. This definition

needs to point to the XML file defined in step 3.
6. In our menu setup for the search invoker activity, indicate that the search

view needs to target the search results activity from step 2.

We will provide code snippets for each of these steps. As mentioned
earlier, the complete code is available in the downloadable project. In fact, when
we run the project for this chapter, the search view is visible on all the action

bars presented in the previous sections of this chapter: tab, list, and standard.

ACTION BAR AND FRAGMENTS.
The action bar is generally recommended for use with fragments

when we’re dealing with tablets. Because fragments are inside an activity, and
an activity owns the action bar, we don’t need the abstraction of a base class to

ensure the same action bar for each activity. All fragments share the same
activity, so they also share the same action bar. The solution is simpler.

