\qquad

THIRD SEMESTER B.Sc. DEGREE (SUPPLEMENTARY/IMPROVEMENT) EXAMINATION, NOVEMBER 2015

(UG-CCSS)
Core Course-Chemistry
CH 3B 05-PHYSICAL CHEMISTRY-I
Time : Three Hours
Maximum : 30 Weightage
I. Answer all the twelve questions. Each question carries a weightage $1 / 4$. This section contains multiple choice, fill in the blanks and one word answer questions :

1 At a particular temperature, the RMS velocity of CO_{2} is comparable with :
(a) $\mathrm{N}_{2} \mathrm{O}$.
(b) $\mathrm{C}_{3} \mathrm{H}_{8}$.
(c) CO .
(d) Both $\mathrm{N}_{2} \mathrm{O}$ and $\mathrm{C}_{3} \mathrm{H}_{8}$.

2 The deviation of a gas from ideal behaviour is maximum at:
(a) High pressure and high temperature.
(b) Low pressure and low temperature.
(c) High pressure and low temperature.
(d) Low pressure and high temperature.

3 The SI unit of surface tension is :
(a) Nm^{-1}.
(b) Jm^{-1}.
(c) Nm^{-2}.
(d) Nm .

4 The value of $\Delta \mathrm{H}$ at any temperature is equal to the value of $\Delta \mathrm{E}$, for the reaction :
(a) $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$.
(b) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$.
(c) $\mathrm{PCI}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$.
(d) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$.

5 The value of equilibrium constant of a reaction is independent of :
(a) The initial amount of reactants.
(b) The pressence of a catalyst.
(c) The direction from which the equilibrium is attained.
(d) All these.

6 A positive value for Joule Thomson coefficient of a gas shows expansion.
exfect on adiabatic
7 The condition for reversibility coincides with the condition for
8 The ratio of the fugacity of a gas in any state to that in a reference state is called \qquad
9 Fermions are particles that obey
10 A chemical equilibrium in which, the substances are in different physical state is called \qquad
11 The degree of degeneracy of a particular energy level is expressed in terms
12 Give the relation between Kp and Kx of a reaction.
II. Answer all the nine questions. Each question carries a weightage of 1 :

13 Write the Maxwell-Boltzmann equation for the distribution of molecular velocities and explain the terms.

14 Calculate the most probable velocity of O_{2} molecule at 300 K .
15. What is optical exaltation?

16 Define parachor.
17 Distinguish between extensive and intensive properties.
18 Write any two limitations of the first law of thermodynamics.
19 'Decrease in Gibb's free energy is a measure of the work other than that due to expansion' : Illustrate.

20 What is meant by residual entropy?
21 The equilibrium constant for the reaction $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightleftharpoons \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$ is 1×10^{5} at 298 K . Calculate the value of $\Delta \mathrm{G}^{\circ}$.
III. Answer any five questions. Each question carries a weightage of \quad : $9 \times 1=9$ weightage)

22 Deduce the Virial equation of state from van der Waals' equation.
23 Calculate the molar refraction of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ for which the refractive index is 1.3611 and density is $0.789 \mathrm{~g} \mathrm{~cm}^{-3}$.

24 Derive any two of the Maxwell's relations.

25 Calculate the entropy of mixing of one mole of oxygen and two moles of hydrogen, assuming no chemical change.

26 Derive the relation between entropy and probability.
27 Calculate the translational partition function of a molecule of O_{2} gas at 1 atm and 298 K , moving in a vessel of volume $24.4 \mathrm{dm}^{3}$. Given the value of ' m ' as $5.3 \times 10^{-26} \mathrm{~kg}$.
28 Explain the effect of temperature and pressure in the following equilibria, using Le-Chatelier's principle.
(i) $\mathrm{A}(\mathrm{g}) \rightarrow \mathrm{B}(\mathrm{g})+\mathrm{C}(\mathrm{g}): \Delta \mathrm{H}=\mathrm{xKJ}$ and
(ii) $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}): \Delta \mathrm{H}=-92 \mathrm{KJ}$.

$$
(5 \times-2=10 \text { weightage })
$$

IV. Answer any two questions. Each question carries a weightage of 4 :

29 (i) What is mean free path of a gas ? How is it related to the coefficient of viscosity of the gas?
(ii) Explain the limiting density method for the determination of molecular mass of a gas.
30 (i) Discuss the different steps involved in the working of Carnot cycle and derive an equation for the efficiency of a Carnot engine.
(ii) The vapour pressure of a liquid increased from 630 mm to 760 mm , when the temperature increased from 368 K to 373 K . Calculate the molar enthalpy of vapourisation of the liquid in this temperature range.
31 (i) Write briefly on :
(a) Partition function; and
(b) Statistical weight factor.
(ii) Derive an equation to show the dependence of equilibrium constant on temperature.
($2 \times 4=8$ weightage)

