(Pages : 6) K - 3291

Reg. No.	:	
Name:		

Fifth Semester B.Sc. Degree Examination, February 2021 First Degree Programme under CBCSS

Mathematics

Core Course VII

MM 1543 — ABSTRACT ALGEBRA – GROUP THEORY

(2018 Admission - Regular)

Time: 3 Hours Max. Marks: 80

SECTION - I

All the first 10 questions are compulsory. They carry 1 mark each.

- 1. Describe the set of symmetries of an equilateral triangle.
- What is the inverse of 13 in U(14)?
- 3 Determine all elements of finite order in R*, the group of non zero real numbers under multiplication.
- 4. What is the order of the following permutation (124)(35)?
- 5. Prove that S_n is non-Abelian for all $n \ge 3$.
- 6 Why the set of odd permutations in S_n is not a subgroup?

- 7. Show that a group of prime order is cyclic.
- 8. If a group G has a unique subgroup H of some finite order, show that H is normal in G.
- 9. Define Group Homomorphism.
- 10. Suppose that ϕ is a homomorphism from Z_{30} to Z_{30} and ker $\phi = \{0, 10, 20\}$. If $\phi(23) = 9$, determine all elements that map to 9.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions from among the questions 11 to 26. These questions carry 2 marks each,

- 11. Let a, b and c be elements of a group. Solve the equation axb = c for x. Solve $a^{-1}xa = c$ for x.
- 12. Suppose that H is a non-empty subset of a group G that is closed under the group operation and has the property that if a is not in H then a^{-1} is not in H. Is H a subgroup?
- 13. Prove that a group with two elements of order 2 that commute must have a subgroup of order 4.
- 14 Suppose that *H* is a proper subgroup of *Z* under addition and that *H* contains 12, 30, and 54. What are the possibilities for *H*?
- 15. For n > 1 prove that A_n has order n!/2.

- 16. Find Aut(Z).
- 17. Show that Z has infinitely many subgroups isomorphic to Z.
- 18. Prove or disprove that U(20) and U(24) are isomorphic.
- 19. If G is a finite group and H is a subgroup of G, then show that |H| divides |G|.
- 20. State and prove Fermats Little Theorem.
- 21. Show that a subgroup H of G is normal in G if and only if $xHx^{-1} \in H$ for all x in G.
- Let ϕ be an isomorphism from a group G onto a group G. Prove that if H is a normal subgroup of G, then $\phi(H)$ is a normal subgroup of \overline{G} .
- 23. If ϕ is a homomorphism from Z_{30} onto a group of order 5, determine the kernel of ϕ .
- Suppose that ϕ is a homomorphism from U(40) to U(40) and that $\ker \phi = \{1, 9, 17, 33\}$. If $\phi(11) = 11$, find all elements of U(40) that map to 11.
- 25. Show that every normal subgroup of a group *G* is the kernel of a homo-morphism of *G*.
- 26. Determine all homomorphisms from Z_n to itself.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer **any six** questions from among the questions 27 to 38. These questions carry **4** marks each.

- 27 Prove that the dihedral group of order 6 does not have a subgroup of order 4.
- If d is a positive divisor of n, show that the number of elements of order d in a cyclic group of order n is $\phi(d)$.

3 K – 3291

- 29. Suppose that a cyclic group G has exactly three subgroups: G itself, $\{e\}$, and a subgroup of order 7. What is |G|? What can you say if 7 is replaced with p where p is a prime?
- Prove that Q', the group of positive rational numbers under multiplication, is isomorphic to a proper subgroup.
- 31. Suppose that $\phi: Z_{20} \to Z_{20}$ is an automorphism and $\phi(5) = 5$. What are the possibilities for $\phi(x)$?
- 32. Show that the order of a permutation of a finite set written in disjoint cycle form is the least common multiple of the lengths of the cycles.
- 33. For two finite subgroups H and K of a group, show that $|HK| = |H||K|/|H \cap K|$.
- 34. State and prove the Orbit-Stabilizer Theorem.
- 35. Show that Q, the group of rational numbers under addition, has no proper subgroup of finite index.
- 36. Suppose that there is a homomorphism from a finite group G onto Z_{10} . Prove that G has normal subgroups of indexes 2 and 5.
- 37. State and prove the First Isomorphism Theorem.
- 38. Suppose that ϕ is a homomorphism from Z_{36} to a group of order 24.
 - (a) Determine the possible homomorphic images.
 - (b) For each image in part a, determine the corresponding kernel of ϕ .

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions from among the questions 39 to 44. These questions carry 15 marks each.

- 39. Prove that the center of a group G is a subgroup of G and determine the centers of the dihedral groups.
- 40. (a) Prove that an infinite group must have an infinite number of subgroups.
 - (b) Suppose that a and b are group elements that commute and have orders m and n. If $\langle a \rangle \cap \langle b \rangle = |e|$, prove that the group contains an element whose order is the least common multiple of m and n. Show that this need not be true if a and b do not commute.
- 41. (a) Show that every group is isomorphic to a group of permutations.
 - (b) Determine Inn(D₄).
- 42. Compute $Aut(Z_{10})$ and show that it is isomorphic to U(10).
- 43. Let G be a group of order 2p, where p is a prime greater than 2. Then show that G is isomorphic to Z_{2p} or D_p .
- 44. Let f be a homomorphism from a group G to a group \overline{G} and let H be a subgroup of G. Prove the following :
 - (a) $\phi(H) = {\phi(h) | h \in H}$ is a subgroup of G
 - (b) If H is cyclic, then $\phi(H)$ is cyclic.
 - (c) If H is Abelian, then $\phi(H)$ is Abelian.
 - (d) If H is normal in G, then $\phi(H)$ is normal in $\phi(G)$.
 - (e) If $|\ker \phi| = n$, then ϕ is an n-to-1 mapping from G onto $\phi(G)$.

5

- (f) If |H| = n, then $|\phi(H)|$ divides n.
- (g) If K is a subgroup of \overline{G} , then $f^{-1}(\overline{K}) = \{k \in G \mid \phi(k) \in \overline{K}\}$ is a subgroup of G.
- (h) If \overline{K} is a normal subgroup of \overline{G} , then $f^{-1}(\overline{K}) = \{k \in G \mid \phi(k) \in \overline{K}\}$ is a normal subgroup of G.
- (i) If ϕ is onto and $\ker \phi = \{e\}$, then ϕ is an isomorphism from G to \overline{G} . (2 × 15 = 30 Marks)