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SECTION - |

All the first ten questions are compulsory. Each carries 1 mark.

Determine whether the map &:GL(n, -)— - given by ¢(A)=1tr(A) Is a

homomorphism, where, GL(n.~.) is the multiplicative group of all invertible n x n
matrices.

Find the order of (Z4x Z;)/((2.1))

Find the solution of the congruence 36x = 15(mod24), if it exists.

Find the order of the ring M,(775)
Find a solution of the quadratic equation x? +2x+4=0 in the ring 75
Find the number of zero divisors in the ring .4

Compute the product (12)(16) in Zp4
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

State whether true or false: * " is a subfield of _~
Find all ideals of _.»

Find the characteristic of the ring . .5 % 1=

(10 x 1 = 10 Marks)
SECTION — i

Answer any eight questions from this Section. Each carries 2 marks.

Let ¢:G — G' be a group hamomorphism of G onto G'. Prove that G"is abelian if
G is abelian.

Find ker¢g and ¢(3) for ¢: _p— "o such that ¢(1) = 8.

Let ¢:G »G' be a group homomorphism, show that if |G is finite, then |4[G]| is
finite and is a divisor of |G .

Find the order of 5+ (4) in =, / (4}

Show that A, is a normal subgroup of S,, and compute S, /A,

Prove that the factor group of a cyclic group Is cyclic.

Compute the factor group (Z: % Z5)/(0,2)

Let H be a normal subgroup of an abelian group G. Then show that G/H is
abehan.

Describe all ring homomorphisms of _.into __.
Find the remainder when 3*’ is divided by 23.

Describe all units in the ring 2~ x

Let R be a commutative ring with unity of characteristic 3. Compute and simplify

(a-b)° for a,beR.
(8 x 2 =16 Marks)
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SECTION — I
Answer any six guestions from this Section. Each carries 4 marks.

Prove that a group homomorphism ¢:G - »G' is a one-one map if and only if
ker g = {€}

Let #:G -> H be a group homomorphism. Show that ¢[G] is abelian if and only

1

if, for every x.y = G we have xyx'v ' ckerg.

Show that arbitrary intersection of normal subgroups of a group G is again a
normal subgroup.

Show that the characteristic of an integral domain must be either zero or a
prime p.

Find the last two digits in the decimal representation of 37°°.

Show that for every integer n, the number n™ — n is divisible by 15.

Let d = gcd(a,m,). Prove the congruence ax - b(mod/m) has a solution If and
only if d/b

Show that the group homomorphism ¢:G — G' where }G\ IS prime must either

be trivial or a one-one map

State and prove Fermat's Little Theorem.

(6 x 4 = 24 Marks)
SECTION - IV

Answer any two questions from this Section. Each carries 15 marks.
Let R be a ring that contains at least two elements. Suppose for each non-
zeroa € R, there exists a unique b« R such that aba - a.
(a) Show that R has no divisors of zero.
) Show that bab = b.
(c) Show that R has unity.
) Show that R is a division ring.
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33.

34.
35.

(a) Show that all automorphisms of a group G form a group under function
composition.

(b) Show that the inner automorphisms of a group G form a normal subgroup of
the group of all automorphisms of G under function composition.

State and prove fundamental theorem of Ring Homomaorphism.

Prove that
(a) Every field is an Integral Domain.
(b) Every finite integral domain is a field.
(c) |If pisaprime, then -, has no divisors of zero.
(2 x 15 = 30 Marks)
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