K - 3232

Pages	:	4)
-------	---	----

Reg. N	10	. :	•	••	•	••	•	•	• •	•	•	• •	•	•	•	•	•	•	•	•		•	•
Name	:							٠.								•			•		•		

Fifth Semester B.Sc. Degree Examination, February 2021 First Degree Programme under CBCSS

Mathematics

Core Course VIII

MM 1545 : ABSTRACT ALGEBRA I (2015-2017 Admission)

Time: 3 Hours Max. Marks: 80

PART - A

All the first **ten** questions are compulsory. They carry **1** mark each.

- 1. Define a binary operation on the set of all $n \times n$ matrices with real entries.
- 2. Give an example of an isomorphism from $(\mathbb{R}, +)$ to $(\mathbb{R}^+, .)$
- 3. Why <Q, +) and <Z, +) are not isomorphic?</p>
- Check whether z under addition is a group.
- 5. Give example of abelian and non-abelian groups of order 6.
- Write the generators of Z₈?
- 7. What are the subgroups of Z?
- 8. Give an example of a finite group that is not cyclic.

- 9. Write the identity permutation in S_n as a product of transpositions.
- 10. Find all cosets of the subgroup 4Z of Z.

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions from this section. Each question carries 2 marks.

- 11. Prove that in a binary structure $\langle S, * \rangle$ if there is an identity element, it is unique.
- 12. Determine whether the diagonal $n \times n$ matrices with no zeros on the diagonal is a subgroup of $GL(n, \mathbb{R})$.
- Prove that every cyclic group is abelian.
- Describe the group of symmetries of a square.
- 15. Prove that every permutation σ of a finite set is a product of disjoint cycles.
- 16. Find the number of elements in the set. $\{\sigma \in S_5 \mid \sigma(2) = 5\}$.
- 17. Find the order of the permutation (1 4 7).
- 18. Let G be a group and let $a \in G$. Prove that $\langle a^{-1} \rangle = \langle a \rangle$.
- 19. Prove that order of an element of a finite group divides the order of the group.
- Give an example of a subgroup of a group G whose left cosets give a partition of G into just one cell.
- 21. Suppose that |G| = pq, where p and q are prime. Prove that every proper subgorup of G is cyclic.
- 22. Find the order of (8, 4, 10) in the group $\mathbf{Z}_{12} \times \mathbf{Z}_{60} \times \mathbf{Z}_{24}$. (8 × 2 = 16 Marks)

PART - C

Answer any six questions. Each question carries 4 marks.

- 23. Let G be a group and let $a \in G$. Prove that $H = \{a^n \mid n \in \mathbb{Z}\}$ is a subgroup of G and is the smallest subgroup of G that contains a.
- 24. Show that if H and K are subgroups of an abelian group G, then $\{hk \mid h \in H \text{ and } k \in K\}$ is a subgroup of G.
- 25. Find all subgroups of \mathbb{Z}_{18} and give their subgroup diagram.
- 26. Show that S_n is non-abelian for $n \ge 3$.
- 27. Let σ be a permutation of a set A. For $a, b \in A$ define $a \sim b$ iff $b = \sigma^n$ (a) for some $n \in \mathbb{Z}$. Show that \sim is an equivalence relation.
- 28. Let H be the subgroup $\langle \mu_1 \rangle = \{ \rho_0, \, \mu_1 \}$ of S_3 . Find the partition of S_3 into left cosets of H and the partition into right cosets of H.
- Let H be a subgroup of a finite group G. Show that the order of H is a divisor of the order of G.
- 30. Let σ = (1 2 5 4)(2 3) in S_5 . Find the index of $\langle \sigma \rangle$ in S_5 .
- 31. Show that no permutation can be expressed both as a product of even number of transpositions and as a product of an odd number of transpositions.

 $(6 \times 4 = 24 \text{ Marks})$

PART - D

Answer any two questions from this part. Each question carries 15 marks.

- 32. Describe the Klein-4 group and \mathbf{Z}_4 and determine their structural differences. Also draw their subgroup diagrams.
- 33. Let G be a cyclic group with generator a. Prove that if the order of G is infinite, then G is isomorphic to $(\mathbb{Z}_n, +)$ and if G has finite order n, then G is isomorphic to $(\mathbb{Z}_n, +_n)$.

K – 3232

- 34. Prove that every group is isomorphic to a group of permutations.
- 35. Let $G_1, G_2,...,G_n$ be groups. For $(a_1, a_2,...,a_n)$ and $(b_1, b_2,...,b_n)$ in $\prod_{i=1}^n G_i$ define $(a_1, a_2,...,a_n)$ $(b_1, b_2,...,b_n)$ to be the element $(a_1, b_1, a_2, b_2,...,a_nb_n)$. Prove that $\prod_{i=1}^n G_i$ is a group.

 $(2 \times 15 = 30 \text{ Marks})$