Reg.	No.	:	 	٠.	٠.	••	•	••	•	٠.	•			•	
Nam	ь,														

Fourth Semester B.Sc. Degree Examination, March 2020 First Degree Programming under CBCSS

Mathematics

Core Course III

MM 1441 : ALGEBRA AND CALCULUS II

(2014 - 17 Admissions)

Time: 3 Hours

Max. Marks: 80

UNIT I

Answer all questions from this unit. Each question carries 1 marks.

- 1. Find $(x^3+1)(2x^2+2)$ in $\mathbb{F}_3[x]$.
- 2. Find the remainder when $3x^2 x 1$ is divided by $x^3 2$.
- 3. For which values of k in Q, does x-k divide $x^3-kx^2-2x+k+3$.
- 4. State whether the polynomials x-1 and 2x+3 are associates in $\mathbb{Z}/5\mathbb{Z}[x]$.
- 5. Give an example of an irreducible polynomial of degree 2 in $\mathbb{R}[x]$.
- 6. Suppose that $z = x^2y$, $x = t^2$, $y = t^3$. Use the chain rule to find $\frac{dz}{dt}$.

- 7. What is the natural domain of the function $f(x, y, z) = \sqrt{1 x^2 y^2 z^2}$.
- 8. Write f_x if $f(x,y) = 2x^3y^2 + 2y + 4x$.
- 9. Evaluate $\lim_{(x,y)\to(-1,2)}\frac{xy}{x^2+y^2}$.
- 10. Find $\int_0^3 \int_1^2 (1+8xy) \, dy \, dx$.

 $(10 \times 1 = 10 \text{ Marks})$

UNIT II

Answer any eight questions from this unit. Each question carries 2 marks.

- 11. Using Fermat's theorem, find two different polynomials of degree 3 with coefficients in $\mathbb{Z}/3\mathbb{Z}$.
- 12. Let $R = \mathbb{Z}/4\mathbb{Z} = \{0, 1, 2, 3\}$. Find all the units of R[x].
- 13. Find all roots of $f(x) = x^2 2x$ in $\mathbb{Z}/5\mathbb{Z}$.
- 14. Let N(e) be the number of elements of U_p , the group of units of $\mathbb{Z}/p\mathbb{Z}$ which have order e. Then show that $\Sigma_{e/p-1}N(e)=p-1$.
- 15. Let $f(x) = x^2 + bx + 4$ in $\mathbb{R}[x]$. For what values of b, f(x) is irredicible?
- 16. Decompose into partial fractions: $\frac{t+1}{(t-1)(t+2)}$.
- 17. Describe the level surfaces of $f(x, y, z) = z^2 x^2 y^2$.
- 18. Find $\frac{\partial^2 z}{\partial x}$ if $z = x^4 \sin(xy^3)$.

- 19. Show that when f is differentiable, a function of the form z=f(xy) satisfies the equation $x\frac{\partial z}{\partial x} y\frac{\partial z}{\partial y} = 0$.
- 20. Show that the function $u(x,t) = \sin(x-ct)$ is a solution of $\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$.
- 21. Find the parametric equation for the surface generated by revolving the curve $y = \frac{1}{x}$ about the x-axis where $1 \le x \le 5$.
- 22. Evaluate the triple integral $\iiint_G 12xy^2z^3dV$ over the rectangular box G defined by the inequalities $-1 \le x \le 2$, $0 \le y \le 3$, $0 \le z \le 2$.

 $(8 \times 2 = 16 \text{ Marks})$

UNIT III

Answer any six question from this unit. Each question carries 4 marks.

- 23. Solve the equation $x^3 + 6x = 20$ by Cardano's method.
- 24. In Q[x], find the g.c.d. of x^6-1 and x^4-1 . Write the g.c.d. as in Bezout's identify.
- State and prove Remainder Theorem. State roots theorem.
- 26. Prove that for any n, $\Sigma_{d/n} \phi(d) = n$.
- 27. Find the slope of the sphere $x^2 + y^2 + z^2 = 1$ in the y-direction at the points $\left(\frac{2}{3}, \frac{1}{3}, \frac{2}{3}\right)$ and $\left(\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right)$.
- 28. Suppose that $w = x^2 + y^2 z^2$ and $x = \rho \sin \phi \cos \theta$, $y = \rho \sin \phi \sin \phi$, $z = \rho \cos \phi$. Find $\frac{\partial w}{\partial \rho}$ and $\frac{\partial w}{\partial \theta}$.

- 29. Use Lagrange Multipliers to determine the dimensions of a rectangular box open at the top, having a volume of 32 ft³ and requiring the least amount of material for its construction.
- 30. Find an equation of the tangent plane to the parametric surface x = uv, y = u, $z = v^2$ at the point which correspond to (u, v) = (2, -1).
- 31. Use a polar double integral to find the area enclosed by the three petaled rose $r = \sin 3\theta$.

 $(6 \times 4 = 24 \text{ Marks})$

UNIT IV

Answer any two question from this unit. Each question carries 15 marks.

- 32. (a) Solve the equation $x^3 7x + 6$.
 - (b) Find a solution of $y^4 = 5y + 6$.
- 33. (a) State fundamental theorem of Algebra.
 - (b) Prove that: no polynomial f(x) in R[x] of degree > 2 is irreducible in R[x].
- 34. (a) Find the absolute maximum and minimum values of f(x, y) = 3xy 6x 3y + 7 on the closed triangular region R with vertices (0, 0), (3, 0) and (0,5).
 - (b) Locate all relative extrema and saddle points of $f(x, y) = 1 x^2 y^2$.
- 35. (a) Use a triple integral to find the volume of the solid within the cylinder $x^2 + y^2 = 9$ and between the plane z = 1 and x + z = 5.
 - (b) Find the volume of the solid enclosed between the paraboloids $z=5x^2+5y^2$ and $z=6-7x^2-y^2$.

 $(2 \times 15 = 30 \text{ Marks})$