J - 2706

(Pages : 4)

Reg. No	. :	•••••	•••••	 •
Name : .				

Second Semester B.Sc. Degree Examination, May 2020 First Degree Programme Under CBCSS Complementary Course for Chemistry/Polymer Chemistry MM 1231.2 : Mathematics II

CALCULUS WITH APPLICATIONS IN CHEMISTRY - II

(2018 Admission onwards)

Time: 3 Hours Max. Marks: 80

PART - A

Answer all the ten questions. Each question carries 1 mark.

- 1. Find $\frac{\partial f}{\partial y}$ if $f(x,y) = \sin(x/y)$.
- 2. Define the gradient of a scalar field.
- Give an example for an alternating series.
- 4. What is the sum of the numbers from 1000 to 2000.
- State D' Alembert's Ratio test.
- 6. Find the divergence of the vector field $\vec{a} = x^2 y^2 z^2 \vec{i} + y^2 z^2 \vec{j} + x^2 z^2 \vec{k}$.
- 7. Evaluate $\int_{3}^{3} \int_{1}^{2} (1 + 8xy) dy dx$.

- 8. Define irrotational vector field.
- 9. Evaluate $1^3 \cdot 2^3 \cdot 3^3 + \dots + 6^3$.
- 10. Evaluate $\int_0^z \int_0^z (x^2 y^2 + z^2) dz dy dx$.

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions from among questions 11 to 22. Each question carries 2 marks.

- 11. Find the total derivative of $f(x,y) = x^2 + 3xy$ with respect to x, given that $y = \sin^{-1} x$.
- 12. Verify whether $df = x^2 dy (y^2 + xy) dx$ is an exact differential.
- 13. Sum the series $S = 2 + \frac{5}{2} + \frac{8}{2^2} + \frac{11}{2^3} + \dots$
- 14. Evaluate the sum $\sum_{n=1}^{N} \frac{1}{n(n+2)}$.
- 15. Determine whether the following series converges:

$$\sum_{\tau=1}^{\infty} (-1)^{\tau-\tau} \frac{1}{n} = 1 - \frac{1}{2} \pm \frac{1}{3} - \dots$$

- 16. Find the equations of the tangent plane and normal line to the surface of the sphere $\phi = x^2 + y^2 + z^2$ at the point (0,0, a).
- 17. Show that curl grad $\phi = \vec{0}$
- 18. Show that $\nabla (\nabla \phi \times \nabla \psi) = 0$ where ϕ and ψ , are scalar fields.
- 19. Evaluate the double integral $1 \int \int_{\mathbb{R}} x^2 y dx dy$ where R is the triangular area bounded by the lines x = 0, y = 0 and x + y = 1.

- 20. Find the Laplacian of $\varphi = x^2 + y^2 2z^2$.
- 21. Find the centre of mass of the solid hemisphere bounded by the surfaces $x^2 + y^2 + z^2 a^2$ and the xy-plane, assuming that it has a uniform density ρ .
- 22. Find an expression for a volume element in spherical polar coordinates.

$$(8 \times 2 = 16 \text{ Marks})$$
PART – C

Answer any six questions from the questions 23 to 31. Each question carries 4 marks.

- 23. Transform the expression $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ into polar co-ordinates.
- 24. The temperature of a point (x, y) on a unit circle is given by T(x, y) = 1 + xy. Find the temperature of the two hottest points on the circle.
- 25. Determine the range of values of x for which the following power series converges: $P(x) = 1 + 2x 4x^2 + 8x^2 + ...$
- 26. Expand $f(x) = \cos x$ as a Taylor series about $x = \pi / 3$.
- 27. Prove that the area of the ellipse $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is πab .
- 28. Find the volume of the tetrahedron bounded by the three coordinate surfaces x = 0, y = 0 and z = 0 and the plane x/a + y/b + z/c = 1.
- 29. Find and evaluate the maxima, minima and saddle point of the function $f(x,y) = xy(x^2 + y^2 1)$.
- 30. Find the moment of inertia of a uniform rectangular lamina of mass M with sides a and b about one of the sides of length b.
- 31. Find the Taylor expansion up to quadratic terms in x-2 and y-3, of $f(x,y) = y \exp(xy)$ about the point x=2, y=3.

 $(6 \times 4 = 24 \text{ Marks})$

PART - D

Answer any two questions from the questions 32 to 35. Each question carries 15 marks.

- 32. Find the stationary points of $f(x,y,z) = x^3 + y^3 + z^3$ subject to the constraints. $g(x,y,z) = x^2 + y^2 + z^2 = 1$ and h(x,y,z) = x y + z = 0.
- 33. Derive the Frenet-Serret formulae for space curves.
- 34. Determine whether the following series converges:
 - (a) $\sum_{n=1}^{n} \frac{1}{n!+1} = \frac{1}{2} + \frac{1}{3} + \frac{1}{7} + \frac{1}{25} + \dots$
 - (b) $\sum_{n=1}^{\infty} \frac{1}{(n!)^2} = 1 + \frac{1}{2^2} + \frac{1}{6^2} + \dots$
- 35. Evaluate the double integral $I = \int \int_{\mathbb{R}} (a + \sqrt{x^2 + y^2}) dx dy$ where R is the region bounded by the circle $x^2 + y^2 = a^2$..

 $(2 \times 15 = 30 \text{ Marks})$