J - 2704

(Pages: 4)

Reg. No.:

Name :

Second Semester B.Sc. Degree Examination, May 2020 First Degree Programme under CBCSS

Complementary Course for Physics

MM 1231.1: MATHEMATICS II – CALCULUS WITH APPLICATIONS IN PHYSICS – II

(2018 Admission Onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - I

Answer the first ten questions are compulsory. They carry 1 mark each.

- 1. Find the complex conjugate of the complex number $z = (x + 5i)^{(3y+2ix)}$.
- 2. Find the sum of the complex numbers 1+2i, -3+4i and 2-6i.
- 3. Find the argument of the complex number $z = 1 + \sqrt{3}i$.
- 4. Evaluate $\frac{d}{dx} \left(\sinh^{-1} \left(\frac{3}{x} \right) \right)$.
- 5. Let $f(x,y) = \tan^{-1}\left(\frac{y}{x}\right)$ Find $\frac{\partial f}{\partial x}$.
- 6. State Pappu's second theorem.
- 7. Find $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dx dy dz$.

- 8. Find the Laplacian of the scalar field $\varphi = xy^2z^3$.
- 9. Define ∇ a in spherical polar coordinates, where a is a vector field.
- 10. The position vector of a particle at time in Cartesian coordinates is given by $r(t) = 2t^2i + (3t 2)j + (3t^2 1)k$. Find the velocity of the particle.

SECTION II

Answer any eight questions among the questions 11 to 22. These questions carry 2 marks each.

- 11. Evaluate $lm (cosh^2 z)$.
- 12. Solve the hyperbolic equation $\cosh x 5 \sinh x 5 = 0$.
- 13. Evaluate $\int e^{2x} \sin 3x dx$.
- 14. Show that the differential $df = x^2 dy (y^2 + xy) dx$ is not exact.
- 15. Find the total derivative of $f(x,y) = x^2 + 3xy$ with respect to x, given that $y \sin^{-1} x$.
- 16. Find the Taylor expansion, up to quadratic terms in x-2 and y-3 of $f(x,y) = ye^{xy}$ about the point x=2, y=3.
- 17. Evaluate $\int_{1}^{3} \int_{2}^{4} (40 2xy) dy dx$.
- 18. A semi-circular uniform lamina is freely suspended from one of its corners. Show that its straight edge makes an angle of 23.0° with the vertical.
- 19. Evaluate the double integral $\iint_R x^2 y \, dx dy$, where R is the triangular area bounded by the lines x=0, y=0 and x+y=1.
- 20. Find div F and curl F or the vector field F $(x, y, z) = x^2i 2j + yzk$.

- 21. For the function $\varphi = x^2y + yz$ at the point (1,2,-1), find its rate of change with distance in the direction a = i + 2j + 3k.
- 22. The position vector of a particle in plane polar coordinates is $r(t) = p(t)\hat{e}p$. Find p expressions for the velocity and acceleration of the particle in these coordinates.

SECTION III

Answer any six questions among the questions 23 to 31. These questions carry 4 marks each.

- 23. By writing $\frac{\pi}{12} = \frac{\pi}{3} \frac{\pi}{4}$ and considering $e^{\frac{1\pi}{12}}$, evaluate $\cot\left(\frac{\pi}{12}\right)$.
- 24. Prove that $\tanh^{-1} x = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right), -1 < x < 1.$
- 25. Prove that $z^n + \frac{1}{z^n} = 2 \cos n\theta$ and $z^n \frac{1}{z^n} = 2i \sin n\theta$, where $z = e^{i\theta}$.
- 26. The function f(x,y) satisfies the differential equation $y\frac{\partial f}{\partial x}+x\frac{\partial f}{\partial y}=0$. By changing to new variables $u=x^2-y^2$ and v=2xy, show that f is a function of x^2-y^2 only.
- 27. The temperature of a point (x, y) on a unit circle is given by T(x, y) = 1 + xy. Find the temperature of the two hottest points on the circle.
- 28. Identify the curved wedge bounded by the surface $y^2 = 4ax$, x + z = a and z = 0 and hence calculate its volume V.
- 29. Find the Jacobin $\frac{\partial(x,y,z)}{\partial(u,v,w)}$ of the transformation u=xy, v=y, w=x+z.
- 30. Prove that curl $a = \nabla \times (\nabla \times a) = \nabla (\nabla \cdot a) \nabla^2 a$.

31. For the twisted space curve given parametrically by $x = au(3-u^2), y = 3au^2$. $z = au(3+u^2)$. Show that the radius of curvature at u is $3a(1+u^2)^2$.

SECTION IV

Answer any two questions among the question 32 to 35. These questions carry 15 marks each.

- 32. (a) Use the Moivre's theorem with n=4 to prove that $\cos 4\theta = 8\cos^4\theta 8\cos^2\theta + 1$, and deduce that $\cos\frac{\pi}{8} = \left(\frac{2+\sqrt{2}}{4}\right)^{\frac{1}{2}}$.
 - (b) By diffentiating $e^{(a+ib)x}$ and separating real and imaginary parts, find the derivatives of $e^{ax} \cos bx$ and $e^{ax} \sin bx$.
- 33. (a) Find the stationary values of f $(x,y) = 4x^2 + 4y^2 + x^4 6x^2 y^2 + y^4$ and classify them as maxima, minima or saddle points.
 - (b) Suppose that $w = \sqrt{x^2 + y^2 + z^2}$, $x = \cos \theta$, $y = \sin \theta$, $z = \tan \theta$. Find $\frac{dw}{d\theta}$ when $\theta = \frac{\pi}{4}$.
- 34. (a) Evaluate $\int_{-x}^{x} e^{-x^2} dx$.
 - (b) A tetrahedron is bounded by the three coordinate surfaces and the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{x} = 1$ and has density $\rho(x,y,z) = \rho_0 \left(1 + \frac{x}{a} \right)$. Find the average value of the density.
- 35. (a) Express the vector field $a = yzi yj + xz^2k$ in cylindrical polar coordinates, and hence calculate its divergence.
 - (b) Derive Frenet-Serret formulae.