(Pages:	4)	.)
---------	----	----

Reg. No. :	
Name :	

Sixth Semester B.Sc. Degree Examination, March 2020 First Degree Programme under CBCSS Physics

Core Course XI

PY 1643 – CLASSICAL AND MODERN OPTICS (2014 Admission onwards)

Time: 3 Hours Max. Marks: 80

SECTION - A

Answer all questions; each carries 1 mark

- Define interference.
- 2. Give two examples of coherent sources.
- 3. What is Rayleigh's criterion for resolution?
- 4. State and explain grating law.
- 5. Light can be polarised, while sound cannot be. Why?
- 6. State Malu's law.
- 7. What is the principle of optical fibre?
- 8. What is meant by population inversion?

- 9. Give one advantage of hologram over ordinary photograph.
- Write Hartmann dispersion formula.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight; each carries 2 marks.

- 11. Draw the intensity distribution curve of interference pattern.
- Explain the phenomenon of color of thin films.
- 13. Define the resolving power of a grating.
- 14. What are Fresnel's half period zones? Why are they called so?
- 15. Write two applications of Michelson interferometer.
- 16. What are negative and positive crystals? Give two examples for each.
- 17. Explain how elliptically polarised light can be produced.
- 18. Give four applications of LASER.
- 19. Explain.stimulated emission of radiation with a neat diagram.
- 20. What is the difference between a step index fibre and graded index fibre?
- 21. Define the acceptance angle. Give an expression for it.
- 22. Explain different types of holograms.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six; each carries 4 marks

- 23. The distance between the slit and biprism and between the biprism and the screen are 50cm each. The angle of the biprism is 179° and its refractive index is 1.5. If the distance between successive fringes is 0.0135cm, calculate the wavelength of light used.
- 24. Light of wavelength 600nm falls normally on a thin wedge shaped film of refractive index 1.4, forming fringes that are 2mm apart. Find the angle of the wedge.
- 25. If the grating element is $2 \times 10^{-6} cm$. How many order of spectrum are possible for a light of wavelength 650 nm?
- 26. What is the radius of sixth zone in a zone plate of focal length 10 cm, for a light of wavelength 6000 A°?
- 27. When sunlight is incident on water surface at a glancing angle of 36°, the reflected light is found to be completely plane polarised. Determine the refractive index of water and angle of refraction.
- 28. Calculate the thickness of (i) a quarter wave plate, (ii) a half wave plate, given $\mu_e = 1.973$, $\mu_e = 2.656$, and wavelength = 590nm.
- 29. Calculate the numerical aperture and acceptance angle of a fibre having core refractive index = 1.5 and cladding refractive index = 1.45
- The energy level difference between two laser level is 0.21 eV. Determine the wavelength of radiation.
- 31. A soap film 5×10^{-5} cm thick is viewed at an angle of 35° to the normal. Find the wavelength of light in the visible spectrum, which will be absent from the reflected light, $\mu = 1.33$.

 $(6 \times 4 = 24 \text{ Marks})$

3 J – 1904

SECTION - D

Answer any two; each carries 15 marks

- 32. Describe an experiment to determine the wavelength of sodium light using Fresnel's biprism.
- 33. Derive an expression for the intensity distribution in the diffraction pattern of a single slit and draw intensity curve.
- 34. Explain with theory the production of circularly and elliptically polarised light waves.
- 35. Explain the principle, construction and working of a He-Ne laser.

 $(2 \times 15 = 30 \text{ Marks})$