(Pages: 6) K - 3290

Reg. N	lo.	:	 	•••
Mamo				

Fifth Semester B.Sc. Degree Examination, February 2021 First Degree Programme Under CBCSS

Mathematics

Core Course VI

MM 1542 COMPLEX ANALYSIS I

(2018 Admission-Regular)

Time: 3 Hours Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. They carry 1 mark each.

- 1 Write $1+\sqrt{3}i$ in polar form.
- 2 Which of the points i.2-i, and -3 is farthest from the origin?
- 3 Compute $(1+i)^{24}$.
- 4 Define analyticity of a complex-valued function on an open set.
- 5 Let $f(z) = e^z (1 + z + z^2/2 + z^3/6)$. Find $f^{(3)}(0)$.
- 6. Express cos(1-i) in the form a+bi.
- 7 Evaluate $Log(\sqrt{3} + i)$

- 8 Define a contour.
- 9. Compute $\int_{\Gamma} \overline{z} dz$ where Γ is the circle |z| = 2 traversed once counterclock-wise.
- 10. If P(z) is a polynomial and Γ is any closed contour, explain why $\int_{\Gamma} P(z) dz = 0$.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions from among the questions 11 to 26. These questions carry 2 marks each.

- 11. Find the most general harmonic polynomial of the form $ax^2 + bxy + cy^2$.
- 12. Prove that the function $f(z) = e^z$ is entire and find its derivative.
- 13. Prove that the function g(z) z is continuous on the whole plane.
- Show that the function Arg z is discontinuous at each point on the non-positive real axis.
- 15. Find all values of $(1-i)^{3/2}$.
- 16. Find all the poles and their multiplicities for $R(z) = \frac{(3z + 3i)(z^2 4)}{(z 2)(z^2 + 1)^2}$.
- 17. A polynomial p(z) of degree 4 has zeros at the points 1, 3i and -3i of respective multiplicities 2, 1 and 1. If p(1) = 80, find p(z).
- 18. Show that if the rational function R(z) has a pole of order m at z_0 , then its derivative R'(z) has a pole of order m+1 at z_0 .
- 19. Show that the function $f(z) = (x^2 + y) + i(y^2 x)$ is not analytic at any point.
- 20. Evaluate $\int (3z^2 5z + i)dz$ along the line segment from z = i to z = 1.

- 21. Prove that sin z = 0 if and only if $z = k\pi$ where k is an integer.
- 22. Prove that the function e^2 is one-to-one on any open disk of radius π .
- 23. True or false: If f is analytic at each point of a closed contour, then $\int f(z)dz = 0$.
- 24. Show that if C is a positively oriented circle and z_0 lies outside C, then $\int_C \frac{dz}{z-z_0} = 0.$
- 25. Compute $\int_{\Gamma} \frac{1}{z-z_0} dz$ where Γ is the circle $|z| z_{0} = r$ traversed twice in the counterclockwise direction starting from the point $z_0 + r$.
- 26. When do you say that the loop Γ_0 is continuously deformable to the loop Γ_0 in the domain D?

(8 × 2 = 16 Marks) SECTION – III

Answer any six questions, from among the questions 27 to 38. These questions carry 4 marks each.

- 27. Compute the integral $\int_{0}^{2\pi} \cos^4 \theta \ d\theta$.
- 28. Let f(z) be defined by $f(z) = \begin{cases} \frac{2z}{z+1} & \text{if } z \neq 0 \\ 1 & \text{if } z = 0 \end{cases}$.

At which points does f(z) have a finite limit, and at which points is it continuous? Which of the discontinuities of f(z) are removable?

29. Show that $h(z) = x^3 + 3xy^2 - 3x + i(y^3 + 3x^2y - 3y)$ is differentiable on the coordinate axes but is nowhere analytic.

3

K – 3290

- 30. Determine a branch of $f(z) = \log(z^3 2)$ that is analytic at z = 0, and find f(0) and f'(0).
- 31. Prove that there exists no function F(z) analytic in the annulus D:1<|z|<2 such that F'(z)=1/z for all z in D.
- 32. Prove that any branch of log z is analytic in its domain and has derivative 1/z.
- 33. Find the maximum value of $|z^{7} + 3z 1|$ in the disk $|z| \le 1$
- 34. Compute $\int_{0.2}^{\infty} \frac{2z+1}{z(z-1)^2} dz$ along the figure-eight contour C sketched below:

- 35. Find an upper bound for $\left|\int_{\Gamma} \frac{e^z}{z^z + 1} dz\right|$ where Γ is the circle |z| = 2 traversed once in the counterclockwise direction.
- 36. Evaluate $\int_{\Gamma} \frac{e^{z}}{(z^2+1)^2} dz$ where Γ is the circle |z| = 3 traversed once counterclockwise.
- 37. If f is analytic in the annulus $1 \le |z| \le 2$ and $|f(z)| \le 3$ on |z| = 1 and $|f(z)| \le 12$ on |z| = 2, prove that $|f(z)| \le 3 |z|^2$ for $1 \le |z| \le 2$.
- 38. Write the polynomial, $p(z) = z^5 + 3z + 4$ in the Taylor form, centered at z = 2.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions from among the questions 39 to 44. These questions carry 15 marks each.

39 (a) Let
$$f(z) = \begin{cases} \frac{x^{4/3}y^{5/3} + ix^{5/3}y^{4/3}}{x^2 + y^2} & \text{if } z \neq 0\\ 0 & \text{if } z = 0 \end{cases}$$

Show that the Cauchy-Riemann equations hold at z = 0 but that f is not differentiable at this point.

- (b) Suppose that f(z) is analytic and nonzero in a domain D. Prove that $\ln |f(z)|$ is harmonic in D.
- 40. (a) Show that the equation $e^z = 1$ holds if and only if $z = 2k\pi i$, where k is an integer. Also show that the equation $e^{z_1} = e^{z_2}$ holds if and only if $z_1 = z_2 + 2k\pi i$, where k is an integer.
 - (b) Define a branch of $(z^2 1)^{1/2}$ that is analytic in the exterior of the unit circle, |z| > 1.
- 4 '. (a) State and prove Cauchy's Integral Formula.
 - (b) Show that every nonconstant polynomial with complex coefficients has at least one zero.
- 42. (a) Compute $\int_{\Gamma} \frac{3z-2}{z^2-z} dz$ where Γ is the simple closed contour indicated in the following figure

- (b) Suppose that f is analytic inside and on the unit circle |z| = 1. Prove that if $|f(z)| \le M$ for |z| = 1, then $|f(0)| \le M$ and $|f'(0)| \le M$. What estimate can you give for $|f^{(n)}(0)|$?
- 43. (a) Compute the integral $\int_{c_r} (z z_z)^n dz$, with n an integer and C_r the circle $|z z_z| = r$ traversed once in the counterclockwise direction.
 - (b) Show that the function Log z is analytic in the domain D^* consisting of all points of the complex plane except those lying on the nonpositive real axis. Also show that $\frac{d}{dz}Log z = \frac{1}{z}$ for all $z \in D^*$.
- 44. Let g be continuous on the contour Γ and for each z not on Γ , set $G(z) = \int \frac{g(\zeta)}{\zeta z} dz$. Show that the function G is analytic at each point not on Γ , and its derivative is given by $G'(z) = \int \frac{g(\zeta)}{(\zeta z)^2} dz$.

 $(2 \times 15 = 30 \text{ Marks})$