## (Pages : 4)

Reg. No. : .....

Name : .....

Sixth Semester B.Sc. Degree Examination, March 2021

First Degree Programme under CBCSS

**Mathematics** 

**Core Course** 

MM 1643 - COMPLEX ANALYSIS - II

(2015 – 2017 Admission)

Time: 3 Hours

Max. Marks: 80

## SECTION - A

All the first ten questions are compulsory. Each question carries 1 mark.

- Find the power series representation of  $f(z) = \frac{1}{z}$  in powers 1-z.
- 2. Find the radius of convergence of the power series  $\sum_{n=0}^{n} \frac{z^n}{n!}$ .
- 3. What are the isolated singularities of  $\frac{1}{\cos \frac{\pi}{2}}$ .
- Define removable singularity.
- 5. What type of isolated singularity for  $f(z) = \sin\left(\frac{1}{z}\right)$  has at z = 0.
- 6. Find the residue of  $f(z) = \frac{1+z}{z-1}$  at z=1.

- 7. Find the pole (poles) of  $f(z) = \frac{1}{z(e^z 1)}$  and find their order.
- 8. Define Cauchy principal value of an improper integral.
- 9. Find the set of all singular points of the function f(z) = Re(z).
- 10. Evaluate  $\int_{c} \frac{1}{(z-1)^2} dz$ , where C is the circle |z-1|=1taken in counter clockwise direction.

 $(10 \times 1 = 10 \text{ Marks})$ 

## SECTION - B

Answer any eight questions from this section. Each question carries 2 marks.

- 11. Evaluate  $\int_{C} \frac{z}{(9-z^2)(z+i)} dz$ , where C is the circle |z|=2 taken in counter clockwise direction.
- 12. Find a power series representing the function  $f(z) = \frac{1}{z^2}$  near z = 3. Also find the region of Convergence.
- 13. Evaluate  $\int_{c}^{c} \frac{e^{z}}{z^{2}+2z+1} dz$ , where *C* is the circle |z+1|=1 oriented in counter clockwise direction.
- 14. If f(z) is an analytic function so that f(z)=3z+1 for all z in the unit circle C:|z|=1. Show that  $|f^{5}(0)| \le 480$ .
- 15. Find  $\int_C \frac{1}{z^2+5}$ , where C is the circle |z-i|=3 oriented positively.
- Define residue of a complex function at an isolated singular point.
- Find the residues of cotz at its poles.
- 18. State Jordan's lemma.
- 19. Evaluate  $\sum_{n=0}^{n} {n \choose k}^2$ .

- 20. State Cauchy's residue theorem.
- 21. Using Cauchy's residue theorem evaluate  $\int_{C} \frac{e^{-z}}{z^2} dz$ , where C is the circle |z|=3 oriented positively.
- 22. Find power series representation of coshz in powers of z.

(8 × 2 = 16 Marks)

SECTION - C

Answer any six questions from this section. Each question carries 4 marks.

- 23. State and prove Cauchy's integral formula.
- 24. Prove that for any real number  $a_i \int_{0}^{\pi} e^{a\cos\theta} \cos(a\sin\theta) d\theta = \pi$ .
- 25. Using Cauchy's residue theorem evaluate  $\int_C \frac{z^5}{1-z^3} dz$  where C is the circle |z|=2 oriented in counter clockwise direction.
- 26. Prove that an isolated singular point  $z_0$  of a function f is a pole of order m if and only if f(z) can be written in the form  $f(z) = \frac{\phi(z)}{(z-z_0)^m}$  where  $\phi(z)$  is analytic and nonzero at  $z_0$ .
- 27. Find the residue of  $f(z) = \frac{zdz}{(9-z^2)(z+1)}$  at its poles and hence find  $\int_C f(z)dz$  where C is the positively oriented circle |z|=2.
- 28. Evaluate the improper integral  $\int_0^\infty \frac{dx}{(x^2+1)^2}$ .
- 29. Show that  $\sum_{n=0}^{r} {2n \choose n} \frac{1}{5^n} = \sqrt{5}$ .
- 30. Evaluate  $\int_0^{2\pi} \frac{d\theta}{5 + 4\sin\theta}$ .
- 31. Show that  $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2 + 1} = \frac{-1}{2} + \frac{\pi e^{\pi}}{e^{2\pi} 1}.$

 $(6 \times 4 = 24 \text{ Marks})$ 

## SECTION - D

Answer any two questions from this section. Each question carries 15 marks.

- 32. (a) If f is an analytic at a given point, then show that the derivative of all orders of f are analytic there.
  - (b) Find g(2) if  $g(z_0) = \int_C \frac{2s^2 s 2}{s z_0} ds$ , where C is the positively oriented circle |z| = 3 and  $|z_0| \neq 3$ .
- 33. (a) If C is the positively oriented circle |z|=1 show that  $\int_C z^2 \sin \frac{1}{z} dz = \frac{-\pi i}{3}$ .
  - (b) Prove that, a point  $z_0$  at which the function f(z) is analytic, is a zero of f(z) of order m if and only if f(z) can be written in the form  $f(z) = (z z_0)^m g(z)$  where g(z) is analytic and nonzero at  $z_0$ .
  - (c) If p and q are two complex functions, which are analytic at a point  $z_0$  so that  $p(z_0) \neq 0$  and q has a zero of order m at  $z_0$ . Show that  $\frac{p(z)}{q(z)}$  has a pole of order m at  $z_0$ .
- 34. (a) State and prove Cauchy's residue theorem.
  - (b) Evaluate  $\int_0^x \frac{dx}{x^4+1}$ .
  - (c) Evaluate  $\int_0^{\infty} \frac{\cos ax}{(x^2+b^2)^2}, (a>b>0)$ .
- 35. (a) Prove that if f is complex function having only a finite number of poles  $\{z_k\}$ , then  $\sum_{n=-r_{outk}}^{x} (-1)^n f(n) = -\sum_{k} \text{Res}(f(z)\pi \cot \pi z, z_k).$ 
  - (b) Evaluate  $\sum_{n=1}^{r} \frac{(-1)^{n+1}}{n^2}$ .

 $(2 \times 15 = 30 \text{ Marks})$