K - 3230

Reg. No. :	
------------	--

Name :

Fifth Semester B.Sc. Degree Examination, February 2021

First Degree Programme under CBCSS

Mathematics

Core Course

MM 1543 - DIFFERENTIAL EQUATIONS

(2015-2017 admission)

Time: 3 Hours Max. Marks: 80

SECTION - I

All the first questions are compulsory. They carry 1 marks each.

- 1. Find the order of the differential equation $(y''')^2 + (y^*)^9 + y 4$.
- 2. State whether the equation $y'+y'' \tan x = \cos^3 x$ is linear or non-linear,
- 3. Verify that y = c(1+x) is a solution of (1+x)y'-y=0.
- Give the general form of a separable equation.
- 5. Define growth constant.
- 6. A differential equation M dx + N dy is exact if and only if ————
- 7. Write down the standard form of a linear differential equation of second order.
- Give an example for an Euler-Cauchy equation.

- 9. Write down the auxiliary equation of the differential equation y'' + y' 3y = 0.
- 10. State the Existence and Uniqueness Theorem for initial value problem.

$$(10 \times 1 = 10 \text{ Marks})$$

SECTION - II

Answer any eight questions from among the question 11 to 22. These questions carry 2 marks each.

- 11. Solve $x(1+y^2)dx+y(1+x^2)dy=0$.
- 12. Solve $y' + y^2 \sin x = 0$.
- 13. Solve $y' + 3y e^{2t}$.
- 14. Find a curve in the xy-plane that passes through (0,3) and whose tangent line at a point (x,y) has slope $\frac{2x}{y^2}$.
- 15. Solve the differential equation $(x^3 + 3xy^2) dx + (y^5 + 3x^2y) dy = 0$.
- 16. Find a general solution of y''-y'-6y=0.
- 17. Find a general solution of $x^2y'' \frac{5}{2}xy' 2y = 0$.
- 18. Find the Wronskian of the bases \cos ax, sin ax \.
- 19. Write down the auxiliary equation of the differential equation $x^2y'' + 6xy' + 4y = 0$.
- 20. Verify $y_x = e^{-3x}$ is a solution of $y'' y = 8e^{-3x}$.
- 21. Find a general solution of $x^2y'' + 7xy' + 13y = 0$.
- 22. Define general solution of nonhomogeneous linear differential equation.

$$(8 \times 2 = 16 \text{ Marks})$$

SECTION - III

Answer **any six** question from among the questions 23 to 31. These questions carry **4** marks each.

- 23. Solve the initial value problem xy'+y=x; y(1)=2.
- 24. Solve the initial value problem $y' = \frac{4x^2}{y + \cos y}$; $y(1) = \pi$.
- 25. According to United Nations data, the world population in 1998 was approximately 5.9 billion and growing at a rate of about 1.33% per year. Assuming an exponential growth model, estimate the world population at the beginning of the year 2023.
- 26. Find an integrating factor and solve the differential equation $(2\cos y + 4x^2)dx = x\sin y dy$.
- 27. Using the method of reduction of order solve the differential equation $x^2y'' 5xy' + 9y = 0$, given that $y = x^2$ is a solution.
- 28. Solve the initial value problem y''+4y'-4y=0; y(0)=1; y'(0)=1.
- 29. Solve the initial value problem $x^2y'' + xy' + 9y = 0$; y(1) = 2; y'(1) = 0.
- 30. Solve the differential equation $y'' 4y' + 5y = e^{2t} \csc x$.
- 31. Solve the initial value problem $4x^2y'' + 24xy' + 25y = 0$; y(1) = 2; y'(1) = -6.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer **any two** questions from among the questions 32 to 35. These questions carry **15** marks each.

- 32. (a) Solve the initial value problem (y+2)dx+y(x+4)dy=0; y(-3)=-1.
 - (b) Use Euler's Method with a step size of 0.1 to make a table of approximate values of the solution of the initial value problem y' = y x; y(0) = 2, over the interval $0 \le x \le 1$
- 33. At time t = 0, a tank contains 4 lb of salt dissolved in 100 gal of water. Suppose that brine containing 2 lb of salt per gallon of brine is allowed to enter the tank at a rate of 5 gal/min and that the mixed solution is drained from the tank at the same rate. Find the amount of salt in the tank after 10 minutes.
- 34. (a) Solve the differential equation $y'' + y = \sec x$ using the Method of Variation of Parameters.
 - (b) Solve the boundary value problem y'' + y = 0; y(0) = 3; $y(\pi) = -3$.
- 35. Solve the following differential equations using the Method of Undetermined Coefficients.
 - (a) $y'' + 4y = 8x^2$
 - (b) y'' + 2y' + y = e'.

 $(2 \times 15 = 30 \text{ Marks})$