K - 3292

(Pages : 4)

Reg. No.	:	٠.	••	•••	•••	 ••••	
Name :				•.•.		 	

Fifth Semester B.Sc. Degree Examination, February 2021 First Degree Programme Under CBCSS

Mathematics

Core Course VIII

MM 1544: DIFFERENTIAL EQUATIONS

(2018 Admission - Regular)

Time: 3 Hours Max. Marks: 80

SECTION - I

Answer all the questions.

- The order of the differential equation $\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = e^2$ is
- 2. Form the differential equation having for it general solution y = ax where a and b any constant.
- 3. The equation $\frac{dy}{dx} + py Q$ is called
- Define exact equation.
- 5. Define particular solution of a differential equation.
- 6. Integrating factor of the equation $\frac{dy}{dx} y \cot x = 2x \sin x$ is

- 7. A differential equation Mdx + Ndy = 0 is exact if
- Form the differential equation that represents all Parabolas each of which has a latus rectum 4a and whose axes are parallel to the x -axis.
- 9. Find out the Wronskain of e' and e'.
- 10. Define a singular solution of a differential equation.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions.

11 Verify that the following are the solution of the corresponding differential equation.

$$y=mx+c:\frac{d^2y}{dx^2}=0.$$

- 12. Form the differential equation by eliminating α and β from $(x-\alpha)^2+(y-\beta)^2-r^2$.
- 13. Find out the general solution of xdx + ydy = 0.
- 14. Solve $ydx xdy + 3x^2y^2e^{x^2}dx = 0$.
- 15. Solve y' = (y/x) + tan(y/x).
- 16. Solve $\frac{dy}{dx} + y \cos x = 1/2 \sin x$.
- 17. Solve $(x+1)\frac{dy}{dx} + 1 = 2e^{-x}$.
- 18. Solve $P^2 + \left(x + y \frac{2y}{x}\right)P + xy + \frac{y^2}{x^2} y \frac{y^2}{x} = 0$.
- 19. Solve $y = 2Px + y^2P^3$.
- 20. Define Wronskain.

- 21. Define variation of Parameter in second order ODE.
- 22. Solve $y''+y = \sec x$ by variation of parameters.
- 23. Solve $(D^2 + DD' 2D'^2) z = 0$.
- 24. Solve $(D^4 D'4)z = 0$.
- 25. Find the orthogonal trajections of the family of curves given by $r = a \sin \theta$.
- 26. Write the general solution of (y Px)(P 1) = P.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions.

27. Solve
$$\frac{dy}{dx} = \frac{6x - 4y - 3}{3x - 2y + 1}$$
.

28. Solve
$$x \, dx + y \, dy - \left(\frac{x \, dy - y \, dx}{x^2 + y^2} \right) = 0$$
.

- 29. Verify whether $e^{y}dx + (xe^{y} + 2y)dy = 0$ is exact if so solve.
- 30. Solve $(1+y^2)dx + (x-tan^{-1}y)dy = 0$.
- 31. Given that y = x is a particular solution of the differential equation $x^2y^n 2x(1+x)y' + 2(1+x)y = x^3$. Find its general solution.
- 32. Solve $P\sqrt{x} + q\sqrt{y} = \sqrt{z}$.
- 33. Solve $(D^2 4) = e^{2x} + e^{-4x}$.
- 34. Find the Particular integral of $(D^2 4D + 3)y = e^x \cos 2x$.

- 35. Apply the method of variation of Parameter to solve $y''+3y'+2y=x^2$.
- 36. By the method of variation of Parameter solve $\frac{d^2y}{dx^2} = 6\frac{dy}{dx} + 9y = e^{2x}$.
- Find the general solution of zp + x = 0.
- 38. Find the equation of the system of orthogonal trajectories of the Parabola $r = \frac{2a}{1+\cos\theta}$ where a is the parameter.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer any two questions.

39. Solve
$$\frac{dy}{dx} - \frac{y^3}{x^3} + \frac{3x^2y}{2xy^3}$$
.

- 40. Solve $(2xy^2e^y + 2xy^3 + y)dx + (x^2y^4e^y x^2y^2 3x)dy = 0$.
- 41. Solve $(1+y^2) dx + (x-tan^2y) dy = 0$.
- 42. (a) Solve $(D^2 4D + 4)y = 3x^2e^{2x} \sin 2x$.
 - (b) Solve $(D^2 6D + 13)y = 2^x$.
- 43. Find the orthogonal trajectories of the family of curves $\frac{x^2}{a^2} + \frac{y^2}{b^2 + c} 1$ where C is the parameter.
- 44. (a) By the method of variation of parameter solve $\frac{d^2y}{dx^2} = 6\frac{dy}{dx} + 9y = \frac{e^{3x}}{x^2}$.
 - (b) Find the general solution of P + 3q = 5z + tan(y 3x).

 $(2 \times 15 = 30 \text{ Marks})$