_				
Pa	m.	20	٠	A 1
Гα	u	-3		₩1

Reg. N	lo.	;	•-	 	-		•	••	•	•••	•	••	•	•	••	•	••	į.	
Name	:			 		٠.				 ٠.									

Second Semester B.Sc. Degree Examination, May 2020 First Degree Programme Under CBCSS

Mathematics

Foundation Course II

MM 1221 : FOUNDATIONS OF MATHEMATICS

(2014 - 2017 Admission)

Time: 3 Hours Max. Marks: 80

PART - A

Answer all questions. Each question carries 1 mark.

- 1. $27x \equiv 1 \pmod{31}$ has a solution. Justify the statement.
- 2. Write down the elements of $[7]_{12}$.
- 3. Define a complete set of representatives for $\mathbb{Z}/m\mathbb{Z}$
- 4. Define a 2 pseudo prime.
- 5. Find the absolute minimum of $f(x) = 3x^4 + 4x^3$.
- 6. State the fundamental Theorem of calculus.
- 7. Give the arc length formula for parameterized curves.

- 8. Evaluate $\lim_{x\to 0} \frac{1-\cos x}{x^2}$.
- 9. Show that for p > 1, $\int_{1}^{\infty} \frac{dx}{x^{p}} = \frac{1}{p-1}$.
- 10. Find the rectangular co-ordinates of the point whose polar coordinates are $\left(6, \frac{2\pi}{3}\right)$.

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions. Each question carries 2 marks.

- 11. Prove that, if $a \equiv b \pmod{m}$ and d/m, then $a \equiv b \pmod{d}$.
- 12. Prove that, $[a]_m = [b]_m$ if and only if $a \equiv b \pmod{m}$.
- 13. Find the order of [4] in Z/7Z.
- 14. Show that Fermat's theorem is special case of Euler's Theorem.
- 15. Find the intervals on which $f(x) = x^3 4x + 3$ is increasing and is decreasing.
- 16. Find the point of inflection of $f(x) = \sin x$ on $[0, 2\pi]$.
- State the second derivative test for twice differentiable functions.
- State the theorem of differentiability of inverse functions.
- 19. Evaluate $\int \frac{dx}{\sqrt{4x^2-9}}, \ x > \frac{3}{2}.$
- 20. Find $\int_{0}^{x} (1-x)e^{-x} dx$.

- 21. Find the area enclosed by the cardioid $r = 1 \cos \theta$.
- 22. Express $r = 2 + \cos \frac{5\theta}{2}$, parametrically.

 $(8 \times 2 = 16 \text{ Marks})$

PART - C

Answer any six questions. Each question carries 4 marks.

- 23. Show that $2^{560} \equiv 1 \pmod{561}$.
- 24. Find 12¹⁰⁰ (mod 34).
- 25. Show that if e is the order of a modulo m, and $a' \equiv 1 \pmod{m}$, there e divides f.
- 26. Evaluate $\int t^4 \sqrt[3]{3-5t^5} dt$ and $\int \frac{\cos\sqrt{x}}{\sqrt{x}} dx$.
- 27. Find the area of the region enclosed by curves, $x = y^2$ and y = x 2 by integrating with respect to x.
- 28. Show that $\frac{d}{dx}(\log_b x) = \frac{1}{x}\log_b e$.
- 29. Show that $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$.
- 30. Find $\int_{0}^{1} \tan^{-1} x \ dx$.
- 31. Find the area enclosed by the region inside $r = 4 + 4\cos\theta$ and outside the circle r = 6.

 $(6 \times 4 = 24 \text{ Marks})$

PART - D

Answer any two questions. Each question carries 15 marks.

- 32. (a) Write the round by round match schedule with 8 players.
 - (b) State and prove Fermat's theorem in terms of congruence classes.
- 33. (a) Briefly explain the encoding and decoding procedures in RSA codes.
 - (b) Find the average value of $f(x) = \frac{\cos \frac{\pi}{x}}{x^2}$ over [1, 3].
- 34. (a) Find the volume of the right pyramid whose altitude is *h* and whose base is a square with sides of length *a*.
 - (b) Find the area of the surface obtained by revolving the region in the first quadrant bounded by $y = x^3$ between x = 0 and x = 1 about the x axis.
- 35. (a) Evaluate $\int \frac{2x+4}{x^3-2x^2} dx$.
 - (b) Sketch the graph of $r = \frac{6}{2 + \cos \theta}$, in polar co-ordinates.

 $(2 \times 15 = 30 \text{ Marks})$