Reg. No. :	
Name :	

Sixth Semester B.Sc. Degree Examination, March 2021

First Degree Programme Under CBCSS

Mathematics

Core Course XIII

MM 1645 — INTEGRAL TRANSFORM

(2018 Admission Regular)

Time: 3 Hours Max. Marks: 80

SECTION - I

All the first ten questions are compulsory. These questions carry 1 mark each.

- 1. What are inverse transforms?
- 2. What is $L(t^n)$?
- Write shifted function.
- 4. What is convolution of f and g, f * g?
- 5. If $L(f) = \frac{1}{(s^2 + \beta^2)^2}$ then $f(t) = \frac{1}{(s^2 + \beta^2)^2}$
- 6. What is the period of sine function?
- 7. Give the Euler formula for a_n , where a_n is the coefficient of $\cos nx$ in the Fourier series expansion of a periodic function.
- 8. $\int_{0}^{\pi} \sin nx \sin mx \, dx =$
- Define odd function.
- 10. Write the Fourier series expansion of an even function.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - II

Answer any eight questions from among the questions 11 to 26. These questions carry 2 marks each.

- 11. Find Laplace transform of e^{at} .
- 12. Find the Laplace transform of cosh at.
- 13. Under suitable conditions, prove that $L(f'') = s^2L(f) sf(0) f'(0)$.
- 14. Find the inverse transform of $\frac{1}{s(s^2 + \omega^2)}$.
- 15. Is the convolution, f * 1 = f? Justify.
- 16. Show that f * g = g * f.
- 17. What is Dirac delta function?
- 18. State existence theorem for Laplace transforms.
- 19. Prove that $\int_{0}^{\pi} \cos nx \cos mx \, dx = 0$.
- 20. Are there functions which are neither even nor odd? Justify.
- 21. What is the amplitude spectrum of rectangular wave function?
- 22. Give the representation of a periodic function f(x) as a Fourier integral.
- 23. What is the relation between Dirichlet's discontinuous function and sine integral?
- 24. What is Gibbs phenomenon?
- 25. Represent $f(x) = 1/(1 + x^2)$ as an integral.
- 26. Write the Fourier cosine transform of an even periodic functions f(x).

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - III

Answer any six questions from among the questions 27 to 38. These questions carry 4 marks each.

- State and prove linearity of the Laplace transforms.
- 28. Find the inverse transform $L(f) = \frac{3s 137}{s^2 + 2s + 401}$.

- 29. If $f(t) = t \cdot \sin \omega t$, find L(f).
- 30. Prove that $L\left(\int_{0}^{t} f(\tau)d\tau\right) = \frac{1}{s}F(s)$.
- 31. If $H(S) = \frac{1}{(s^2 + \omega^2)^2}$, find h(t).
- 32. Solve Volterra's integral equation of second kind:

$$y(t) - \int_{0}^{t} (1+\tau)y(t-\tau)d\tau = 1 - \sin h \tau$$

- 33. Sketch the graph of $f(x) = |\sin x|$.
- 34. Write the Fourier series and Euler formula for the coefficients for a function f(x) of period 2L.
- 35. Find the Fourier sine series of $f(x) = \begin{cases} -k & \text{if } -2 < x < 0 \\ k & \text{if } 0 < x < 2 \end{cases}$ P = 2L = 4, L = 2.
- 36. Derive Fourier sine integral for $f(x) = e^{-kx}$ for x > 0, k > 0.
- 37. Find the Fourier cosine transforms of the function $f(x) = \begin{cases} k & \text{if } 0 < x < a \\ 0 & \text{if } x > a \end{cases}$.
- 38. Find $\mathcal{F}_c(e^{-x})$.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - IV

Answer **any two** questions from among the questions 39 to 44. These questions carry **15** marks each.

- 39. (a) Solve the initial value problem y'' + y' + 9y = 0, y(0) = 0.16, y'(0) = 0.
 - (b) Determine the response of the damped mass-spring system under a square wave modeled by y'' + 3y' + 2y = r(t) = u(t-1) u(t-2), y(0) = 0, y'(0) = 0.

- 40. (a) Solve y'' + y' = 2t, $y\left(\frac{\pi}{4}\right) = \frac{\pi}{2}$, $y'\left(\frac{\pi}{4}\right) = 2 \sqrt{2}$.
 - (b) State and prove Convolution Theorem.
- 41. Solve the initial value problem for a damped mass-spring system acted upon by a sinusoidal force for some time interval y'' + 2y' + 2y = r(t), $r(t) = 10.\sin 2t$, if $0 < t < \pi$ and if $t > \pi$; y(0) = 1, y'(0) = -5.
- 42. Find the Fourier series expansion of $f(x) = \begin{cases} x & \text{if } -\pi < x < 0 \\ \pi x & \text{if } 0 < x < \pi \end{cases}$.
- 43. (a) Find the Fourier series expansion of sawtooth wave function.
 - (b) Let f(x) be continuous and absolutely integrable on the x-axis. f'(x) is piecewise continuous on every finite interval and let $f(x) \to 0$ as $x \to \infty$. Prove that
 - (i) $\mathcal{F}_c[f'(x)] = w \mathcal{F}_s[f(x)] \sqrt{\frac{2}{\pi}} f(0)$
 - (ii) $\mathcal{F}_s[f'(x)] = -\omega \mathcal{F}_c[f(x)]$.
- 44. Find the two half range expansions of $f(x) = \begin{cases} \frac{2k}{L}x, & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}$ $(2 \times 15 = 30 \text{ Marks})$