L = 1582

P	2	a	es		31
١.	a	ઝ	63	•	٠,

Reg. N	lo	•	•	••	 •	••	•	••	•	••	•	•	 •	•		•	•	•	 •	•	
Name	:	 			 										•						

Sixth Semester B.Sc. Degree Examination, March 2021 First Degree Programme Under CBCSS PHYSICS

Core Course X

PY 1642 : NUCLEAR AND PARTICLE PHYS©CS (2015-2017 Admission)

Time: 3 Hours Max. Marks: 80

SECTION - A

Answer all questions. Each question carries 1 mark.

- 1. What is meant by nuclear isotopes?
- Give the expression for nuclear magneton.
- 3. Define rutherford (rd), a unit of radioactivity.
- 4. Is nuclear force spin dependant? Give an example.
- 5. What is meant by the saturation of nuclear forces?
- Write down the resonance condition for the acceleration of charged particles in a cyclotron.
- Define threshold energy of a nuclear reaction.
- Define nuclear fission.
- 9. What is meant by secondary cosmic rays?
- 10. Which are the carrier particles of weak interaction?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

Answer any eight questions. Each question carries 2 marks.

- 11. Explain nuclear quadrupole moment.
- 12. Give any four evidences for the existence of magic numbers.
- Derive the radioactive decay law.
- 14. Write a note on spin and magnetic moment of deuteron.
- Briefly explain the working of scintillation counter.
- 16. What is the advantage of synchrocyclotron over ordinary cyclotron?
- 17. What is meant by a compound nucleus? Give an example.
- 18. Explain chain reaction.
- 19. What is meant by a breeder reactor?
- 20. Explain the origin of cosmic rays.
- 21. What is meant by Baryon number conservation? Give an example.
- 22. Calculate the binding energy of the last neutron on m_{11}^{23} Na. Mass of m_{11}^{23} Na = 22.989767 m_{11}^{23} Na = 21.9944 m_{11}^{23} mass of neutron = 1.008665 m_{11}^{23}

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks.

- 23. The radius of Holmium ($^{165}_{67}Ho$) nucleus is 7.731 fermi. Deduce the radius of 4_2He .
- 24. $_{5}^{11}C$ decays to $_{5}^{11}B$ by positive β emission. What is the maximum energy the neutrino can have? What is the minimum energy? Atomic mass of $_{5}^{11}C$ = 11.011433u, atomic mass of $_{5}^{11}B$ = 11.009305u.
- Compute the mass of an exchange particle, if the range of the force is about 0.25 fm.
- 26. A GM counter wire collects 10⁸ electrons per discharge. When the counting rate is 500 counts per minute, calculate the average current in the circuit.

L - 1582

- 27. The voltage across the dees of a cyclotron is 50 kV. How many revolutions do protons make to reach a kinetic energy of 20 MeV?
- 28. The Q-value of the raction ${}^{23}_{11}$ Na $(n,\alpha){}^{20}_{9}$ F is -5.4 MeV. Determine the threshold energy of the neutrons for this reaction. Mass of $n=1.008665\ u$, mass of ${}^{23}_{11}$ Na = 22.9898 u.
- 29. A reactor is developing energy at the rate of 3000 kW. How many atoms of U²³⁵ undergo fission per second? How many kilograms of U²³⁵ would be used in 1000 hours of operation assuming that 200 MeV of energy is released per fission? Avogadro number = 6.022×10^{23}
- 30. An electron and positron at rest annihilate to produce two gamme ray photons. Calculate the wavelength of gamma ray photon. $h=6.625\times 10^{-34}Js$, mass of electron $= 9\times 10^{-31}kg$
- 31. Are the following reactions allowed on the basis of conservation laws? For those that are forbidden, which laws are violated?

(a)
$$K^- + p \rightarrow \lambda^\circ + \pi^\circ$$

(a)
$$p+p \rightarrow p+n+K^+$$

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

Answer any two questions. Each question carries 15 marks.

- 32. Explain liquid drop model of a nucleus and arrive at the semi-empirical mass formula.
- Explain the Gamow's theory of alpha decay and derive an expression for decay constant.
- 34. Explain nuclear fusion? Explain the reactions involved in the production of stellar energy. Explain the possibility of controlling nuclear fusion.
- 35. Explain the different types of nuclear reactions. Give one examples for each. Explain with examples, the conservation laws to be obeyed in a nuclear reaction.

 $(2 \times 15 = 30 \text{ Marks})$