J - 1836

(Pag	100		11
(гау	162	٠	4)

Reg. No.	:	 ٠.	••	••	•••	•••	•	••	٠.		••	•	•	••	•	•
Name :		 								 						

Sixth Semester B.Sc. Degree Examination, March 2020.

First Degree Programme under CBCSS

Physics

Core Course X

PY 1642 - NUCLEAR AND PARTICLE PHYSICS

(2013 Admission onwards)

Time: 3 Hours

Max. Marks: 80

PART - A

Answer all the questions. Each question carries 1 marks.

- 1. Define unified atomic mass unit (u).
- 2. Write down the relation between nuclear radius and mass number.
- 3. Define half life of a radioactive isotope.
- 4. Write down the value of spin and binding energy of deuteron
- 5. Which particle is exchanged between the nucleons to exert nuclear force?
- 6. Write down the betatron condition for the orbit of electrons in a betatron
- 7. What is meant by elastic scattering in nuclear reactions?

- Give any two differences between nuclear reactions and ordinary chemical reactions.
- Nuclear fusion is known as thermonuclear reactions. Why?
- 10. What do you mean by cosmic rays?

 $(10 \times 1 = 10 \text{ Marks})$

PART - B

Answer any eight questions. Each question carries 2 marks.

- What is meant by binding energy of a nucleus? Write the equation for binding energy.
- 12. Discuss the nuclear magnetic moment.
- 13. Mention any four conservation laws governing radioactive decay.
- 14. Write any four features of nuclear force inside a nucleus.
- 15. Briefly explain the working of Geiger-Muller counter.
- 16. Ordinary cyclotron cannot be used to accelerate electrons. Why?
- 17. What is meant by Q-value of a nuclear reaction?
- 18. Explain the term scattering cross section.
- 19. Explain Bohr and Wheeler's theory of nuclear fission.
- Explain inertial confinement in fusion reactors.
- 21. Explain cascade theory of cosmic ray showers.
- 22. Find the density of $^{16}_8O$ nucleus. Given $u = 1.66 \times 10^{-27} kg$.

 $(8 \times 2 = 16 \text{ Marks})$

PART - C

Answer any six questions. Each question carries 4 marks.

- 23. Calculate the binding energy per nucleon in ${}^{12}_6C$. Masses of proton neutron and electron are 1.007276u, 1.008665u and .00055u respectively. Atomic mass of ${}^{12}_6C = 12u$.
- 24. If $500\mu g$ of ^{131}I is injected in a patient, determine the activity immediately after injection. Half life of $^{131}I = 8.04$ days. Avogadro number $= 6.022 \times 10^{23}$ per gram mol.
- 25. The experimentally measured mass of π -meson is 140 MeV/c². Estimate the range of the nuclear force.
- 26. A Geiger-Muller counter wire collects 10⁷ electrons per discharge. The average current in the circuit is 1.333×10⁻¹¹A. Find the counting rate per minute.
- 27. A cyclotron of maximum radius 0.25 m, accelerates protons in a 2.0 T magnetic field. Calculate the frequency needed for the applied alternating voltage.
- 28. The cross section of ^{113}Cd for capturing thermal neutrons is 21000 barns and its density is $8.64g/cm^3$. What thickness of cadmium is needed to absorb 99.99 percent of an incident beam of thermal neutrons? Avogadro number $=6.022\times10^{23}$ per gram mol.
- 29. Determine the product nucleus and Q-value in the reaction $^{27}_{13}AI(d,\alpha)$. Masses of $^{27}_{13}AI = 26.9901u$, mass of $^{25}_{12}Mg = 24.9936u$, mass of deuteron = 2.0147u and mass of $\alpha = 4.0039u$.
- 30. What is the energy releases when 1 kg of nuclear fuel is consumed if the fusion reaction ${}_1^2H + {}_1^2H \rightarrow {}_2^4He$ is possible (Mass of ${}_1^2H = 2.0141u$, mass of ${}_2^4He = 4.0026u$.
- 31. The neutral pion at rest decays by $\pi^0 \to \gamma + \gamma$. Calculate the wavelength of gamma ray photon. Rest mass of $\pi^0 = 264 m_e$, where m_e is the mass of the electron.

 $(6 \times 4 = 24 \text{ Marks})$

PART - D

Answer any two questions. Each question carries 15 marks.

- 32. Explain the essential features of shell model of a nucleus. What are magic numbers? Give any four evidences for the existence of magic numbers.
- 33. Explain the origin of line and continuous beta ray spectrum and hence discuss the neutrino theory of beta decay.
- 34. Explain the working of a nuclear fission reactor. What is a fast breeder reactor?
- 35. Discuss the elementary particle quantum numbers and their conservation laws with examples.

 $(2 \times 15 = 30 \text{ Marks})$