H - 1533

1	D-	2	es		3	١
l		٦y	63	*	J	,

Reg. N	lc).	:	••	•	 • •	 •	٠.	•	•		•			•		•	•
Name	:			 														

Third Semester B.Sc. Degree Examination, October 2019 First Degree Programme under CBCSS Complementary Course for Physics CH 1331.1 – PHYSICAL CHEMISTRY II

(2017 Admission onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

(Answer all questions. Each question carries 1 mark)

- 1. The expression for rms velocity is ————
- 2. State the law of corresponding states.
- 3. Sketch the unit cell of bcc crystal.
- 4. CsCl has a bcc structure. How many Cs⁺ and Cl⁻ ions are there in the unit cell?
- State Beer Lambert's law.
- 6. State Einstein's law of photochemical equivalence.
- 7. Write an example for photosensitisation.
- 8. Give an example for a reference electrode.
- 9. What is the point group of NH₃?
- 10. Give an example for a second order reaction.

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

(Answer any eight questions. Each question carries 2 mark)

- 11. Define mean free path.
- 12. What is inversion temperature? Write an expression to find out inversion temperature.
- 13. What is a Bravais lattice.
- 14. At room temperature, sodium crystallises in a body centered cubic cell with a = 4.24 A⁻¹. Calculate the theoretical density of Sodium. Molar mass of sodium = 23.0 g mol⁻¹.
- 15. Define fluorescence.
- 16. Give the mathematic representation of Beer Lamberts law and write any one limitation of the law.
- 17. Define half-life of a reaction. Give expression to find out half-life of a first order reaction.
- 18. Write Arrhenius equation and explain the terms.
- 19. Illustrate the symmetry element proper axis of symmetry with an example.
- 20. Write an example for a molecule having C_{α} point group and list the symmetry elements in C_{α} point group.
- 21. Define standard electrode potential.
- 22. Write any two advantages of potentiometric titrations.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

(Answer any **six** questions. **Each** question carries **4** mark)

- 23. Briefly describe joule Thomson effect.
- 24. Discuss homogenous and heterogenous catalysis.

2

- 25. Define rate of a chemical reaction and explain the factors affecting rate of reaction.
- 26. Discuss Michaelis Menten mechanism of enzyme catalysed reaction.
- 27. Explain the conductometric titrations of weak acid against strong base.
- 28. Write note on calomel electrode.
- 29. Write a note on the general characteristics of catalysis.
- 30. Explain the seven crystal systems.
- 31. Construct the group multiplication table of $C_{\rm av}$ point group to which $H_{\rm s}O$ belongs.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

(Answer any two questions. Each question carries 15 marks)

- 32. (a) Derive Braggs equation.
 - (b) Write a detailed account of the structure of NaCl.
- 33. (a) Discuss the collision theory of reaction rates.
 - (b) Explain are the differences between order and molecularity.
- 34. Define transport number and Describe the moving boundary method for determining the transport number.
- (a) Define catalysis and discuss briefly the intermediate compound formation theory of catalysis.
 - (b) Describe a method for the liquefaction of gases.

 $(2 \times 15 = 30 \text{ Marks})$