J - 2696

Pages	:	4)
-------	---	----

Reg. N	10).	:			•	•			 . ,			•	•	•	•	•	•
Name	:																	

Second Semester B.Sc. Degree Examination, May 2020 First Degree Programme Under CBCSS Chemistry

Complementary Course

CH 1231.1/CH 1231.2 - Physical Chemistry - I

(Common for Physics and Geology)

(2017 admn onwards)

Time: 3 Hours

Max. Marks: 80

SECTION - A

(Answer all questions. Each question carries 1 mark)

- What is an Arrhenius acid?
- 2. What is meant by Gibb's free energy?
- Define entropy.
- 4. What is common ion effect?
- 5. What is standard enthalpy of combustion?
- State Le Chatlier principle.
- 7. Write the relationship between ΔG and K_n .

- 8. Define bond energy.
- 9. What is standard enthalpy of neutralisation?
- 10. What is enthalpy of a system?

 $(10 \times 1 = 10 \text{ Marks})$

SECTION - B

(Answer any eight questions Each question carries 2 marks)

- 11. Define the term equilibrium constant.
- 12. What is meant by leveling effect?
- 13. Why HNO, behaves as weak acid in acetic acid?
- 14. Calculate the pH of 0.0001M HNO₃ solution.
- 15. Define C_p and C_v .
- 16. Calculate the change in entropy when 10 moles of an ideal gas expands reversibly from a volume of 10dm³ to 100 dm³ at 27°C.
- 17. State second law of thermodynamics.
- 18. Equilibrium constant for a reaction is 3.0 at 400°C and 4.0 at 500°C. Calculate ΔH° for the reaction. (K = 1.987 cal deg⁻¹ mol⁻¹)
- 19. What is the effect of change of pressure on the reaction involving combination of nitrogen and hydrogen to form ammonia?
- 20. Calculate the enthalpy change for the transition of graphite to diamond. (Standard enthalpies of combustion for graphite and diamond are -393.5 kJ mol⁻¹ and -395.4 kJ mol⁻¹ respectively)
- 21. What are conjugate acids? Give an example.
- 22. Explain the term salt hydrolysis with a suitable example.

 $(8 \times 2 = 16 \text{ Marks})$

SECTION - C

Answer any six questions. Each question carries 4 marks)

23. Calculate the hydrolytic constant and degree of hydrolysis of CH₃COONH₄ in a 0.1M solution at 298K.

$$(K_b \text{ for } NH_4OH = 1.81 \times 10^{-5}; K_a \text{ for } CH_3COOH = 1.75 \times 10^{-5} K_w = 1 \times 10^{-14}).$$

- 24. Explain the solvent effect on the strength of an acid with suitable examples.
- 25. Derive Gibb's Helmholtz equation. Explain its significances.
- 26. One mole of an ideal gas expands against a constant pressure of 1 atm from a volume of 10 dm³ to a volume of 30 dm³ and absorbs 1.5 kJ of thermal energy from its surroundings.
 - Calculate ΔU for the process in joules.
- 27. Two moles of *PCI*₅ were introduced in 2L flask and heated to 250°C to establish equilibrium when 60% of *PCI*₅ was dissociated into *PCI*₃ and *CI*₂. Calculate the equilibrium constant.
- 28. Discuss the limitations of 1st law of thermodynamics.
- 29. State and explain the law of mass action.
- 30. State and explain Kirchoff's equation.
- 31. Establish the relationship between q_p and q_v for the formation of ammonia through Haber process, assuming ideal nature for the gaseous reactants and products.

 $(6 \times 4 = 24 \text{ Marks})$

SECTION - D

(Answer any two questions. Each question carries 15 marks)

- 32. (a) Derive van't Hoff's equation.
 - (b) Derive the relationship between K_z and K_c .
 - (c) The equilibrium constant of a reaction doubles on rising the temperature from 30°C to 40°C. Calculate ΔH ° for this reaction.
- 33. (a) Derive the relationship between the molar heat capacity of a gas at constant volume and constant pressure.
 - (b) Define
 - (i) Intrinsic energy
 - (ii) Gibb's free energy
 - (iii) Available work
- 34. (a) Write a brief note on buffer solutions
 - (b) Derive Henderson's equation for the pH of an acidic buffer
 - (c) What are the applications of Henderson's equation.
- 35. Discuss about Hess's law and its applications.

 $(2 \times 15 = 30 \text{ Marks})$