H - 1515

1	D	2	a	Δ	c	٠	4)	ĺ
l		a	У	C	Э	٠	7)	

Reg. N	10.	:	••	•••	••	•••	•••	••	• •	••	•	••	•	•	• •	•	•
Name	: .,																

Third Semester B.Sc. Degree Examination, October 2019 First Degree Programme Under CBCSS Complementary Course for Mathematics

ST 1331.1 – PROBABILITY DISTRIBUTIONS AND THEORY OF ESTIMATION

(2014-17 Admissions)

Time: 3 Hours Max. Marks: 80

Use of Statistical Table and Calculator is Permitted SECTION – A Answer all questions Each question carrie 1 marks

- 1. Write the moment generating function of Binomial distribution.
- 2. Give an example of statistical distribution whose mean and standard deviation are same.
- State the additive property of Poisson distribution.
- 4. Define convergence in probability.
- 5. What is meant by standard error?
- 6. Write the variance of Chi square distribution with 10 degrees of freedom.
- . 7. If a random variable $X-F_{(m,n)}$ identify the distribution of 1/X.
 - 8. Write Cramer—Rao inequality.
 - 9. What is meant by point estimation?
 - 10. Write an example of a statistic which is not unbiased but consistent. (10 \times 1 = 10)

SECTION – B Answer any 8 questions. Each question carries 2 Marks.

- 11. If X is a random variable with continuous distribution function F. Then show that F ~ Uniform [0,1]
- 12. Let X be a Poisson random variable with mean 1. Compute P (X≥2)
- Derive the mean of Beta I distribution.
- Define hypergeometric random variable.
- 15. State weak law of large numbers.
- 16. State Lindberg Levy central limit theorem.
- 17. Distinguish between parameter and statistic.
- 18. Define t statistic. Write an example for t statistic.
- Explain the principle of least squares.
- 20. What is meant by minimum variance unbiased estimator?
- 21. Define sufficiency of an estimator. Write an example for sufficient statistic.
- 22. Let $x_1, x_2, \dots x_n$ be a random sample from population with mean μ . Show that the sample mean is an unbiased estimator of μ . (8 × 2 = 16)

SECTION - C

Answer any 6 questions. Each question carries 4 Marks.

- 23. Let X and Y be independent Poisson random variables with respective means μ_1 and μ_2 . If P(X=1) = P(X=2) and P(Y = 2) = P(Y=3) find the variance of X + 2Y.
- 24. Let X and Y be independent and identically distributed geometric random variables.

2

Show that the conditional distribution of X given X+Y is uniform.

- 25. Prove that the odd order moments about mean of Normal distribution are zero.
- 26. Derive that lack of memory property of exponential distribution.
- 27. Let X_n assumes the values $\frac{1}{\sqrt{n}}$ and $-\frac{1}{\sqrt{n}}$ with respective probabilities $\frac{2}{3}$ and $\frac{1}{3}$. Check whether the weak law of large numbers holds good for the sequence $\{X_n\}$ of independent random variables.
- 28. Derive the sampling distribution of the sample mean of a random sample drawn from Normal distribution.
- 29. Establish the relationship between Chi square, t and F distributions.
- 30. Let X be random variable with probability density function $f(x) = (1 + \theta)x^0$, $\theta > 0$, 0 < x < 1. Derive the maximum likelihood estimator of θ .
- 31. Explain the method of moments. Write its properties. $(6 \times 4 = 24)$

SECTION - D

Answer any 2 questions. Each question carries 15 Marks.

- 32. (a) Derive the mode of Binomial distribution.
 - (b) Fit a Poisson distribution for the following data and calculate the expected frequencies

33. Define normal distribution state its properties. Find the MGF of normal distribution.

- 34. (a) Derive Chebyshev's inequality.
 - (b) Let X be a random variable with probability density function $f(x) = \begin{cases} \frac{1}{2\sqrt{3}} & \sqrt{3} < x\sqrt{3} \\ 0 & otherwise \end{cases}.$ Determine the upper bound of P $\left(|X| \ge \frac{3}{2}\right)$ using Chebyshev's inequality.
- 35. (a) Explain the method of interval estimation.
 - (b) Consider a random sample from exponential distribution with mean θ . Show that sample mean is an unbiased estimator of θ also prove that the variance of the estimator coincides with Cramer Rao lower bound. (2 x 15 = 30)