K - 3228

P	ad	es	•	4)
,,	ay	63		71

Reg. l	No).	:	•		• •							•	•	•		•	
Name					 							 						

Fifth Semester B.Sc. Degree Examination, February 2021 First Degree Programme under CBCSS

Mathematics

Core Course V

MM 1541: REAL ANALYSIS - I

(2015 - 2017 Admission)

Time: 3 Hours Max. Marks: 80

All the first 10 questions are compulsory. They carry 1 mark each.

- If u and $b \neq 0$ are real numbers such that $u \cdot b = b$, then u = ----.
- 2. Give a lower bound of $\{x \in \mathbb{R}^: -3 \le x \le 1\}$.
- Give an example of an unbounded interval.
- 4. State the infimum property of R ..
- 5. If X and Y are the sequences X = (5n), and $Y = \left(\frac{1}{3n}\right)$, then the product sequence $\left(\frac{X}{Y}\right)$ is ______.
- Give an example of a divergent sequence.

7.
$$\lim \frac{2n+1}{n+5} = ---$$

- 8. The set of cluster points of the set A = [0, 1] is ———.
- 9. $\lim_{x \to c} x = ---$
- 10. $\lim_{x\to -3} \frac{1}{(x-3)^2} = ---$

Answer any eight questions from among the questions 11 to 22, these questions carry 2 marks each.

- 11. If $a \in \mathbb{R}$, then show that $(-a) \cdot (-a) = a^2$.
- 12. Prove that 1>0.
- 13. Show that if a nonempty set S has finite number of elements, then $\sup S$ exists and belongs to the set S.
- 14. Describe Dedekind's form of completeness property.
- 15. Show that $\lim_{n \to \infty} \left(\frac{1}{n^2} \right) = 0$.
- 16. Prove that a Cauchy sequence of real numbers is bounded.
- 17. Prove that every contractive sequence is a Cauchy sequence.
- 18. Prove that $\sum_{n=0}^{\infty} ar^n$ converges if |r| < 1.
- 19. Show that the series $\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \dots$ converges.
- 20. Prove that $\lim_{x\to 2} \frac{x^3-4}{x^2+1} = \frac{4}{5}$.

- 21. Prove that $\lim_{x\to 0} \sin(x)$ does not exist.
- 22. If p and q are polynomial function on \mathbb{R} and if $q(c) \neq 0$, then prove that $\lim_{x \to c} \frac{p(x)}{q(x)} = \frac{p(c)}{q(c)}.$

Answer **any six** questions from the questions 23 to 31. These questions carry **4** marks each.

- 23. If $a \in \mathbb{R}$ is such that $0 \le a < \varepsilon$ for every positive ε , then prove that a = 0.
- 24. If a and b are real numbers, prove that $|a| |b| \le |a b|$.
- 25. If $x \in \mathbb{R}$ then show that there exists $n_x \in \mathbb{N}$ such that $x < n_x$.
- 26. If $I_n = [a_n, b_n], n \in \mathbb{N}$, is a nested sequence of closed and bounded intervals, then prove that there exists a number $\xi \in \mathbb{R}$ such that $\xi \in I_n$ for all $n \in \mathbb{N}$.
- Prove that a sequence of real numbers can have at most one limit.
- 28. Prove that a bounded sequence of real numbers has a convergent subsequence.
- 29. If $X = (x_n)$ is a sequence of real numbers, then prove that there is a subsequence of X that is monotone.
- Prove that a montone sequence of real numbers is properly divergent if and only
 if it is unbounded.
- 31. If $f: A \to \mathbb{R}$ and if c is a cluster point of A, then prove that f can have at most one limit at c.

Answer **any two** questions from among the questions 32 to 35. These questions carry **15** marks each.

- 32. (a) Determine the set of all real numbers x that satisfy |x-1| < 1.
 - (b) Let A and B be bounded nonempty subsets of the set of real numbers, and let $A + B = \{a + b : a \in A, b \in B\}$, prove that $\sup (A + B) = \sup A + \sup B$.

3 K – 3228

- 33. (a) Prove that a monotone sequence of real numbers is convergent if and only if it is bounded. Also, prove that if $Y = (y_n)$ is a bounded decreasing sequence, then $\lim (y_n) = \inf \{ y_n : n \in \mathbb{N} \}$.
 - (b) Examine the convergence of the sequence (e_n) , where $e_n = \left(1 + \frac{1}{n}\right)^n$ for $n \in \mathbb{N}$.
- 34. (a) Prove that a sequence of real numbers is convergent if and only if it is a Cauchy sequence.
 - (b) Discuss the convergence of the series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$ if converges, find the sum.
- 35. (a) Let $A \subseteq \mathbb{R}$ and $f : A \to \mathbb{R}$ and $g : A \to \mathbb{R}$ are two functions, and let $c \in \mathbb{R}$ be a cluster point of A. If $\lim_{x \to c} f = L$ and $\lim_{x \to c} g = M(L)$ and M real numbers), then prove that $\lim_{x \to c} (f = g) = L + M$
 - (b) Show that $\lim_{x\to 0} \sin x = 0$.