

Reg. No.	:
Name ·	

I Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.)
Examination, November 2018
Complementary Course in Mathematics
1C01 MAT-CS: MATHEMATICS FOR COMPUTER SCIENCE – I
(2014 Admn. Onwards)

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

1. The derivative of $e^x \sinh^{-1} \sqrt{x}$ is

2.
$$\lim_{x\to 0} \frac{\log(1+x)}{x} =$$

3. Compute $\frac{\partial f}{\partial x}$ at (1, 3) for $f(x, y) = 2x^3y^2 + 2y + 4x$.

 $(1 \times 4 = 4)$

4. Express the equation
$$x^2 + y^2 + 6y = 0$$
 in polar co-ordinates.
SECTION – B

Answer any 7 questions from among the questions 5 to 13. These questions carry

2 marks each.

- Find the nth derivative of cosx.cos2x.cos3x.
- 6. If $xy = ae^x + be^{-x}$, prove that $xy_2 + 2y_1 xy = 0$.
- 7. Expand sinhx as a Maclaurin's series.
- 8. State Cauchy's mean value theorem.
- 9. Is Lagrange's mean value theorem applicable to $f(x) = x^2 + 3x 2$ on [1, 2]?
- 10. Evaluate $\lim_{x\to 0} \left[\frac{1}{x} \frac{1}{\sin x} \right]$.

K18U 2188

11. Find
$$\frac{\partial^2 y}{\partial x \partial y}$$
 if $u = x^2 \sin(y/x)$.

12. Find the radius of curvature at any point (x, y) on the curve $y = c \cosh(x/c)$.

13. If
$$5y^2 + \sin y = x^2$$
, find $\frac{dy}{dx}$. (2x7=14)

SECTION - C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

14. Find the Taylor series for $\sin \pi x$ about $x = \frac{1}{2}$.

- 15. Find $\frac{dy}{dx}$ for $y = \frac{\sin x \cdot \cos x \cdot \tan^3 x}{\sqrt{x}}$ by using logarithmic differentiation.
- 16. Verify Rolle's theorem for $f(x) = e^x$. sinx on $[0, \pi]$.
- 17. If u = f(y z, z x, x y), then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
- 18. Find the equation of the circle of curvature at (1, 1) on the curve $x^3 + y^3 = 2$.
- 19. Find the rectangular co-ordinates of the point $(r, \theta, z) = (4, \pi/_3, -3)$ in cylindrical co-ordinates. (3×4=12)

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. If $y = (\sin h^{-1} x)^2$, then show that $(1 + x^2)y_{n+2} + (2n + 1) xy_{n+1} + n^2y_n = 0$.
- 21. Evaluate $\lim_{x\to 0}$ (cot x)^{sin 2x}.
- 22. Obtain the equation of the evolute of the curve $x = a (\cos\theta + \theta\sin\theta)$ $y = a (\sin\theta - \theta\cos\theta)$.
- 23. Find a spherical co-ordinate equation for the sphere $x^2 + y^2 + (z 1)^2 = 1$. (5×2=10)