

Reg.	No.	:	

Name :

I Semester B.Sc. Degree (CBCSS – Reg./Supple./Improv.)

Examination, November 2017

(2014 Admn. Onwards)

COMPLEMENTARY COURSE IN MATHEMATICS

1C01 MAT-CS: Mathematics for Computer Science I

Time: 3 Hours Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Find $\frac{dy}{dx}$ when $x = t^3$ and $y = t^2 t$.
- 2. Find the derivative of In(sinhx4).
- 3. If z = x/y, find $\frac{\partial z}{\partial y}$.

(3md=12)

4. Find an equation for the circular cylinder $4x^2 + 4y^2 = 9$ in cylindrical coordinates. (1×4=4)

(8-x) (8-x) = (x) note and exection - B lev meet s'equation yield where se

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. If $y = x^2\cos x$, show that $x^2y_2 4xy + (x^2 + 6)y = 0$.
- 6. Find the nth derivative of $y = \frac{x+1}{x^2-4}$.
- 7. If $\cos^{-1}\left(\frac{y}{b}\right) = \log\left(\frac{x}{n}\right)^n$, prove that $x^2y_{n+2} + (2n+1)xy_{n+1} + 2n^2y_n = 0$.
- 8. Find the 1027^{th} derivative of $g(x) = \cos x$.
- 9. Verify Rolle's theorem for $f(x) = \log(x^2 + 2) \log 3$ on [-1, 1].

- 10. Evaluate $\lim_{x\to\pi} \frac{x\cos x + \pi}{\sin x}$.
- 11. If the sides and angles of a plane triangle ABC vary in such a way that its circum radius remains constant, prove that, $\frac{\delta a}{\cos A} + \frac{\delta b}{\cos B} + \frac{\delta c}{\cos C} = 0$, where δa , δb and δc denote small increments in the sides a, b and c respectively.
- 12. Verify Euler's theorem when $f(x, y) = ax^2 + 2hxy + by^2$.
- 13. Find the radius of curvature at any point (x, y) of the curve, $y = a \log \sec(x/a)$.

 (2×7=14)

SECTION - C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

14. Prove that
$$f\left(\frac{x^2}{1+x}\right) = f(x) - \frac{x}{1+x}f'(x) + \frac{x^2}{(1+x)^2} \frac{f''(x)}{2!} + \dots$$

- 15. Evaluate $\lim_{x\to\pi/4} (\tan x)^{\tan 2x}$.
- 16. Verify Lagrange's mean value theorem for the function f(x) = (x 4)(x 6)(x 8) in [4, 10].

17. If
$$u = 3 (lx + my + nz)^2 - (x^2 + y^2 + z^2)$$
 and $l^2 + m^2 + n^2 = 1$, show that
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0.$$

- 18. Show that the chord of curvature through the pole of the equiangular spiral $r = ae^{\theta cot\alpha}$ is 2r.
- 19. What do the following equations represent in three dimensional geometry?
 - a) xyz = 0 in Cartesian coordinates.
 - b) $\rho = 0$ in spherical coordinates.
 - c) $\phi = 0$ in spherical coordinates.

 $(3 \times 4 = 12)$

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. Use Maclaurin's theorem to find the expansion of $\log (1+e^x)$ in ascending powers of x to the term containing x^4 .
- 21. Find the intervals in which the function given by

$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$
 is

- a) strictly increasing
- b) strictly decreasing.
- 22. Find the centre of curvature of the four cusped hypocycloid, $x = acos^3\theta$, $y = asin^3\theta$.
- 23. a) Convert the point $(1, -1, -\sqrt{2})$ from Cartesian to spherical coordinates.
 - b) Find an equation in spherical coordinates for the surface $3x^2 x + 3y^2 + 3z^2 = 0$. (5×2=10)