

Reg. No. :	
Name :	
III Semester B.Sc. Degree (CBCSS – Sup./Imp.) Examination, November 2020 (2014 – '18 Admns) GENERAL COURSE IN COMPUTER SCIENCE 3A12CSC – Digital Electronics	
Time: 3 Hours	Max. Marks: 40
SECTION – A	
1. One word answer.	(8×0.5=4)
a) $1101_2 = \frac{10}{10}$	
b) The output of an OR gate with three inputs, A, B and C is LOW when	
c) If A and B are inputs to a half adder then its sum output is	
d) $57_{16} =2$.	
e) A digital multiplexer is a combinational circuit that selects	
 f) S-R type flip-flop can be converted into D type flip-flop if S is connected to R through 	
g) Storage capacity of a register is	
 h) Number of flip flops required to implement a is 	a modulo-6 Johnson's counter
SECTION - B	
Write short notes on any seven of the following q	uestions. (7×2=14)
2. Generate the binary sequence for the decimal	numbers 64 through 75.
3. What is overflow condition in signed arithmetic?	
4. Illustrate how AND-OR logic can be used for implementing SOP expressions.	
5. Use NAND gates to implement the expression	X = A' + B.

K20U 1273

- 6. Design a 1×4 DEMUX.
- 7. Differentiate half adder from a full adder.
- 8. Compare Latches and Flip Flops.
- 9. Draw the logic circuit for a master slave J-K flip flop.
- 10. How a shift register counter differs from a basic shift register?
- 11. Compare a ring counter from a Johnsons counter.

SECTION - C

Answer any four of the following questions :

 $(4 \times 3 = 12)$

- 12. Find the hexadecimal equivalent of the following binary numbers.
 - a) 1101110011.011₂

- b) 101101110101.00110100₂
- 13. Perform subtraction using 2's complement method.
 - a) 110110₂ 100101₂

- b) 100100₂ 111000₂
- 14. With suitable waveform, truth table and logic symbols, explain basic gates.
- 15. Design an 8×1 MUX.
- 16. Give any four comparisons between synchronous and asynchronous counters.
- 17. With neat diagram explain the working of a parallel in serial out shift register.

SECTION - D

Write an essay on any two of the following questions:

 $(2 \times 5 = 10)$

- 18. Establish NOR and NAND gates as Universal logic element.
- 19. Design an even parity generator/checker for the data 10100.
- 20. With the help of neat diagram and waveform, explain a synchronous decade counter.
- 21. Explain the working of a universal shift register with relevant diagram.