-					Ш	III	Ш		III
1	ILEIGIII	BB1 118	12 1615	III	BRIGH			ш	

Reg.	No.	:	

IV Semester B.Sc. Degree (CBCSS-Reg./Supp./Imp.) Examination, April 2019 (2014 Admission Onwards)

COMPLEMENTARY COURSE IN MATHEMATICS 4C04 MAT-CS: Mathematics for Computer Science – IV

Time: 3 Hours

Max. Marks: 40

SECTION - A

All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Find the gradient of the function $f = x^2 + y^2$.
- 2. The line integral of a vector function F = [F₁, F₂, F₃] is path independent if and only if _____
- 3. Give the Newton Raphson iteration formula to find an approximate root of f(x) = 0.
- 4. Give Euler's iteration formula to solve the differential equation y' = f(x, y) $y(x_0) = y_0$.

SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Given a curve C = r(t) where $r(t) = [3\cos t, 3 \sin t, 4t]$ find a tangent of $C = at(3, 0, 8\pi)$.
- 6. Find Curl V for V = yzi + 3xzj + zk.
- 7. Evaluate the line integral $\int_{C} F(r) dr F = x^2i + y^2j C$ is the semicircle from (2, 0) to (-2, 0).
- 8. Evaluate using Green's theorem evaluate $\int_C F(r).dr$ for the function $F = e^x \cos yi e^x \sin yj$ where R is the semi disk $x^2 + y^2 \le a^2 x \ge 0$.

- 9. Evaluate the flux integral $\iint_S F.ndA$ for the following data $F = [x^2, y^2, z^2]$ S: $x + y + z = 4x \ge 0$ $y \ge 0$ $z \ge 0$.
- 10. Evaluate using Divergence theorem $\iint F.ndA$, F = [4x, 3z, 5y] and Sis the surface of the cone $x^2 + y^2 \le z^2$ $0 \le z \le 2$.
- 11. Explain bisection method for finding a real root of an equation.
- 12. Using Taylor series for y(x), find y(0.1) correct to four decimal places.
- 13. Solve by Picard's method $y' = x + y^2$ subject to the condition y = 1 when x = 0.

SECTION - C

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- 14. Let $v = [y, z, 4z x] w = [y^2, z^2, x^2]$ find div $(v \times w)$.
- 15. Evaluate the flux integral $\iint_S F.ndA$ for the following data $F = [\cosh yz, 0, y^4]$ S: $y^2 + z^2 = 1$, $0 \le x \le 20$ $z \ge 0$.
- 16. Evaluate using divergence theorem $\iint_S F.ndA$, $F = [x^3 y^3, y^3 z^3, z^3 x^3]$ and S is the surface of the sphere $x^2 + y^2 + z^2 \le 25$ $z \ge 0$.
- 17. Find a real root of the equation $\sin x = 1 x$ using Newton Rapson method.
- 18. Using modified Euler's method find y(0.2) given that $y' = e^x + y$ y(0) = 0.
- 19. Explain the terms numerical integration and numerical differentiation.

SECTION - D

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

20. Show that the integral $\int\limits_{(2,0,1)}^{(4,4,0)} \left[2x\left(y^3-x^3\right)dx+3x^2y^2dy-3x^2z^2dz\right] \text{ is path independent and find the value of the integral.}$

- 21. Verify divergence theorem for F = 7xi xk over the sphere $x^2 + y^2 + z^2 = 4$.
- 22. From the following table of values of x and y obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.2.

X	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

23. Given $\frac{dy}{dx} = y - x$ where y = 2 when x = 0. Find y(0.1) and y(0.2) using fourth order Runge Kutta Method.