|--|--|--|--|--|

K19U 0730

Reg. I	Vo.	:	•••	••	•••	•••	 •••	 •••			 ••	••	•
Name	:						 			 			

IV Semester B.Sc. Degree (CCSS – Sup.) Examination, April 2019 (2013 and Earlier Admissions) COMPLEMENTARY COURSE IN STATISTICS FOR MATHS/ COMPUTER SCIENCE CORE 4C04 STA: Statistical Inference

Time: 3 Hours

Max. Weightage: 30

PART - A

Answer any 10 Questions.

(Weight: 10×1=10)

- 1. Define Standard Error.
- 2. Define Chi Square variable.
- Define Students t distribution.
- 4. Define Consistency of estimates.
- 5. Define bias of an estimate.
- 6. Define Most Efficient estimate.
- 7. State properties of MLE.
- 8. Define Simple and Composite Hypothesis.
- 9. Define Size and Power of a test.
- 10. State statistical basis of large sample tests.
- 11. A coin is tossed 1000 times and head turned up 518 times. Test whether the coin is unbiased.

PART - B

Answer any 6 Questions.

(Weight: 6×2=12)

- 12. Define Sufficiency of estimates. State Factorization theorem.
- 13. Derive all Raw and Central moments of t distribution.
- 14. Show that, if t has $t_{(n)}$ distribution, then t^2 has $F_{(1,n)}$ distribution.
- 15. Explain method of moments. Obtain the moment estimator of θ , if X has the distribution $f(x) = \{\theta \ x^{\theta+1}; \ 0 < x < 1, \ \theta > 0$

{0 elsewhere.

- 16. Define MVB estimator. Show that the sample mean is MVB estimator of Poisson population.
- 17. Derive $(1-\alpha)$ 100% Confidence Interval for population variance of a Normal Population.
- 18. State N P Lemma. A single observation is taken from

$$f(x) = \{\theta e^{-\theta x}; x > 0, \theta > 0\}$$

{ 0 otherwise.

Find size and power of the test.

- 19. Explain Chi Square test for Independence of Attributes.
- 20. Random samples were taken from two independent populations and the following results were obtained.

Sample	Size	Mean	Standard deviation				
1	80	29.8	a 02.1vo9 bna es 3 - 40				
2	100	30.6	1.9				

- i) Test whether population means differ significantly?
- ii) Obtain 95% confidence limits of difference of population means.

PART - C

Answer any 2 Questions.

(Weight : 2×4=8)

- 21. Derive sampling distribution of sample variance. Show that sample variance is consistent and biased estimator of population variance.
- 22. Explain method of Maximum Likelihood Estimation. Derive MLE of μ and σ^2 of Normal population.
- 23. Mileage of two brands of tyres ('000 kms) tested under standard conditions were as given below:

Brand A: 37, 43, 40, 38, 39, 41

Brand B: 41, 40, 38, 42, 37, 39

Test whether:

- i) Both tyres have the same expected mileage.
- ii) Brand B is more consistent than brand A.
- 24. Explain Chi Square test for Goodness of fit. The following data gives number of road accidents occurred in a district over 500 days.

No. of Accidents (X): 0 1 2 3 4 5 6

Frequency : 76 142 135 86 41 16 4

Fit a Poisson distribution and test Goodness of fit.