

Reg. No.	:
Name :	

V Semester B.Sc. Degree (CBCSS – Reg./Sup./Imp.)
Examination, November 2018
(2014 Admn. Onwards)
CORE COURSE IN COMPUTER SCIENCE (Elective)
5B12CSC (E01): Algorithm Analysis and Design

Time: 3 Hours

Max. Marks: 40

SECTION - A

1.	One word answer: (8×0.5=	:4)
	a) A is a round trip path along the edges of a graph that visit every vertex once and return to its starting position.	
	b) In m-colourability optimization, the smallest integer for which the graph can be coloured is known as	
	c) A graph is said to be if and only if it can be drawn in a plane in such a way that no two edges cross each other.	
	d) O notation stands for	
	e) In backtracking, tree organisation of the solution space is called	
	 f) A feasible solution that either maximises or minimises a given objective function is called 	
	g) Time complexity of quick sort is	
	h) Procedure that calls itself is called	
	SECTION - B	
V	/rite short note on any seven of the following questions: (7×2=	:14)
2	. Explain principle of optimality.	
3	. Define Huffman code.	
4	. Write short note on divide and conquer method.	
		P.T.O.

K18U 1451

- 5. What is control abstraction?
- 6. What are the characteristics of an algorithm?
- 7. Define spanning tree.
- 8. Define performance analysis.
- 9. Compare dynamic and static state space tree.
- 10. What is meant by definiteness and finiteness of an algorithm?
- Briefly describe greedy method.

SECTION - C

Answer any four of the following questions:

 $(4 \times 3 = 12)$

- Briefly describe sum of subsets problem.
- 13. Define algorithm. How to analyze algorithms?
- 14. Write short note on asymptotic notations.
- 15. Write an algorithm for finding maximum and minimum items in a set of 'n' elements using divide and conquer method.
- 16. Write an algorithm for depth first search.
- 17. Briefly describe single source shortest path.

SECTION - D

Write an essay on any two of the following questions:

 $(2 \times 5 = 10)$

- 18. Explain Prim's algorithm to find minimum cost spanning tree.
- 19. Explain Backtracking. Write general iterative algorithm for backtracking.
- 20. Explain Strassen's matrix multiplication in detail.
- 21. Explain Graph colouring in detail.