Turn Over

QP CODE: 19103223

B.Sc.DEGREE (CBCS) EXAMINATION, NOVEMBER 2019

First Semester

Complementary Course - MM1CMT03 - MATHEMATICS - DISCRETE MATHEMATICS (I)

(Common to B.Sc Computer Science Model III, Bachelor of Computer Application, B.Sc Cyber Forensic Model III)

2017 Admission Onwards

94EE1A99

Time: 3 Hours

Maximum Marks :80

Part A

Answer any **ten** questions. Each question carries **2** marks.

- 1. Define conjunction and disjunction of propositions
- 2. Define Universal Quantifier . Give example.
- 3. Define Modus Ponens rule.
- 4. using set identities prove that $\overline{A \cup (B \cap C)} = (\overline{C} \cup \overline{B}) \cap \overline{A}$
- 5. Let $A_i = \{i, i+1, i+2, ...\}$ for i = 1, 2, 3, ... Then find $\cup_{i=1}^n A_i$ and $\cap_{i=1}^n A_i$
- 6. How can we produce the terms of the sequnce $5, 11, 17, 23, 29, 35, \dots$
- 7. Evaluate (a) 13 mod 3 (b) -97 mod 11
- 8. State the fundamental theorem of Arithmetic. Give an example of Prime factorisation
- 9. State Fermat's little theorem
- 10. Define a relation R from A to itself. Give an example.
- 11. How can the matrix representing a relation 'R' on a set A be used to determine whether the relation is asymmetric?
- 12. Suppose $A = \{1, 2, 3, 4, 5, 6\}$, $A_1 = \{1, 2, 3\}$, $A_2 = \{4, 5\}$, $A_3 = \{5, 6\}$. Is A_1 , A_2 , A_3 form a partition of A.

(10×2=20)

Part B

Answer any six questions. Each question carries 5 marks.

13. Define a bit string and length of a bit string. Also find the length of 101010011. And find the bit wise XOR of 10101110 and 01010000.

- 14. Show that $\neg \forall x (p(x) \rightarrow q(x)) and \exists x (p(x) \land \neg q(x))$ are logically equivalent.
- 15. Use rules of inference to show that the hypothesis
 "Ravi works hard", " If Ravi works hard, then he is a dull boy " and " If Ravi is a dull boy, then he will not get the job" imply the conclusion, "Ravi will not get the job"
- 16. Define bijective functions with an example.
- 17. Display the graph of the function $f(x) = x^2$ from the set of integers to the set of integers.
- 18. 1. Find the g c d (11x13x17, 2⁹.3⁷.5⁵.7³)
 2. What is the l c m (3¹³.5¹⁷, 2¹².7²¹)
- 19. Find the g c d (124,323) and express it as the linear combination of 124 and 323.
- 20. Let R be the relation on the set of integers such that a R b if and only if a = b or a = -b. Show that R is an equivalence relation.
- 21. What do you mean by total ordering ?What is a totally ordered set . Give example.

(6×5=30)

Part C

Answer any **two** questions. Each question carries **15** marks.

- 22. State and prove Distributive laws and assosiative laws of logical equivalance
- 23. What are different types of functions. Give any two examples of countable sets. Justify your answer.
- 24. 1.(a) Encrypt the message WATCH YOUR STEP by
 (i) the encryption function f(p) = p + 14(mod 26) (ii) By Caesar's cipher
 2. Decrypt the following messages encrypted using Caesar's cipher
 (a) EOXH MHBQV (b) WHVW WRGDB
- 25. a) Prove that the relation R on a set A is transitive if and only if $\mathbb{R}^n \subseteq \mathbb{R}$ for n=1,2,3, b) Let $\mathbb{R} = \{(1,1), \{2,1), (3,2), (4,3)\}$ Find the powers \mathbb{R}^n , n=2,3,4,.....

(2×15=30)