Time: 3 Hours

Part A

Answer any ten questions.

Each question carries 2 marks.

What is operation research? 1.

Maximum Marks: 80

QP CODE: 19101592

- Explain the use of OR in Agriculture field. 2.
- How OR is useful to the personnel management. 3.
- What you mean by Iconic model.? Give any 2 examples. 4
- What are the uses of linear programming in management? 5.
- Define objective function. What you mean by constraints. 6
- What you mean by degeneracy in LPP. 7.
- What you mean by Non- Degenerate basic feasible solution in Transportation Problem. 8
- How to convert a Maximisation transportation problem to Minimisation? 9
- What you mean by unbalanced assignment problem? 10
- Define saddle point. 11.
- What is two person zero sum game. 12

Part B

Answer any six questions.

Each question carries 5 marks.

- Discuss four characteristics of operation research 13
- Explain the nature of operation research and its limitation 14

 $(10 \times 2 = 20)$

Turn Over

Reg No Name :

BCA DEGREE (CBCS) EXAMINATION, MAY 2019 **Fourth Semester Bachelor of Computer Application Complementary Course - MM4CMT03 - OPERATIONS RESEARCH** 2017 ADMISSION ONWARDS **BE49AE19**

- 15. Solve graphically the following problem Max Z= 3x+5ySubject to $x+y \le 2000$ $x+y \ge 1500$
 - $\begin{array}{c} x \ge 600 \\ x \ge 0 \\ y \ge 0 \end{array}$
- 16. Show that the solution to the following L.P.P. is unbounded

 $\begin{array}{c} \text{Max Z= 2x+3y} \\ \text{Subject to x-y\leq0$} \\ x$+y\geq4$} \\ x$\geq$0,y$\geq0 \end{array}$

17. Find the intial bfs to the transportation problem given below, by northwest corner rule

Destination				
Origins	D1	D2	D3	Supply
01	2	7	4	5
02	3	3	1	8
O3	5	4	7	7
04	1	6	2	14
Demand	7	9	18	

18. Find the intial basic feasible solution of the following transportation problem using the Vogel's Approximation method

	D1	D2	D3	D4	Supply
01	6	4	1	5	14
02	8	9	2	7	16
03	4	3	6	2	5
Demand	6	10	15	4	35

19. Three accountants are to be assigned to three projects. The assignment costs in units of \$1000 are in the table below:

Projects				
	P1	P2	P3	
A1	15	9	12	
A2	7	5	10	
A3	13	4	6	

Give assignments so that the total cost is minimum

- 20. What are the assumptions of a game?
- 21. Solve the game by probability method.

 $\begin{array}{c} Player B\\ Player A \begin{bmatrix} 8 & 5\\ 2 & 6 \end{bmatrix}$

(6×5=30)

Part C

Answer any **two** questions.

Each question carries **15** marks.

22. Solve the following L. P problem using Big M method Min Z= $3x_1 + 8x_2$

Subject to $x_1 + x_2 = 200$ $x_1 \le 20$ $x_2 \ge 60$ $x_1 \ge 0, x_2 \ge 0$

23. Find the optimal solution of the following TP

Destinations					
Origin	A	В	С	D	Supply
1	1	5	3	3	34
2	3	3	1	2	15
3	0	2	2	3	12
4	2	7	2	4	19
Demand	21	25	17	17	

^{24.} a)Define Assignment problem. What you mean by effective matrix of an assignment problem. Write the mathematical representation of an assignment problem.

b)

Job				
		х	У	z
Workers	A	18	17	16
VVOIKEIS	В	15	13	14
	С	19	20	21

Formulate this assignment problem as an LPP.

25. (a) Explain the principle of dominance in game theory.

(b) Solve the game whose pay off matrix is given by

Player B

	$\lceil 2 \rceil$	4	3	4]	
PlayerA	5	6	3	8	
	6	7	9	7	
	$\lfloor 4$	2	8	3	

(2×15=30)