QP CODE: 19101592

BCA DEGREE (CBCS) EXAMINATION , MAY 2019
Fourth Semester
Bachelor of Computer Application
Complementary Course - MM4CMT03 - OPERATIONS RESEARCH

2017 ADMISSION ONWARDS
 BE49AE19

Maximum Marks: $\mathbf{8 0}$

Time: 3 Hours

Part A

Answer any ten questions.
Each question carries $\mathbf{2}$ marks.

1. What is operation research?
2. Explain the use of OR in Agriculture field.
3. How OR is useful to the personnel management.
4. What you mean by Iconic model.? Give any 2 examples.
5. What are the uses of linear programming in management?
6. Define objective function. What you mean by constraints.
7. What you mean by degeneracy in LPP.
8. What you mean by Non- Degenerate basic feasible solution in Transportation Problem.
9. How to convert a Maximisation transportation problem to Minimisation?
10. What you mean by unbalanced assignment problem?
11. Define saddle point.
12. What is two person zero sum game.

Part B

Answer any six questions.
Each question carries 5 marks.
13. Discuss four characteristics of operation research
14. Explain the nature of operation research and its limitation
15. Solve graphically the following problem

Max Z=3x+5y
Subject to $x+y \leq 2000$

$$
\begin{gathered}
x+y \geq 1500 \\
x \geq 600 \\
x \geq 0 y \geq 0
\end{gathered}
$$

16. Show that the solution to the following L.P.P. is unbounded
$\operatorname{Max} Z=2 x+3 y$
Subject to $x-y \leq 0$

$$
\begin{gathered}
x+y \geq 4 \\
x \geq 0, y \geq 0
\end{gathered}
$$

17. Find the intial bfs to the transportation problem given below, by northwest corner rule

Destination				
Origins	D1	D2	D3	Supply
O1	2	7	4	5
O2	3	3	1	8
O3	5	4	7	7
O4	1	6	2	14
Demand	7	9	18	

18. Find the intial basic feasible solution of the following transportation problem using the Vogel's Approximation method

	D1	D2	D3	D4	Supply
O1	6	4	1	5	14
O2	8	9	2	7	16
03	4	3	6	2	5
Demand	6	10	15	4	35

19. Three accountants are to be assigned to three projects. The assignment costs in units of $\$ 1000$ are in the table below:

Projects			
	P1	P2	P3
A1	15	9	12
A2	7	5	10
A3	13	4	6

Give assignments so that the total cost is minimum
20. What are the assumptions of a game?
21. Solve the game by probability method.

Player B
Player $A\left[\begin{array}{ll}8 & 5 \\ 2 & 6\end{array}\right]$

Part C

Answer any two questions.

Each question carries 15 marks.
22. Solve the following L . P problem using Big M method $\mathrm{Min} \mathrm{Z}=3 \mathrm{X}_{1}+8 x_{2}$

Subject to $x_{1}+x_{2}=200$

$$
\begin{gathered}
x_{1} \leq 20 \\
x_{2} \geq 60 \\
x_{1} \geq 0, x_{2} \geq 0
\end{gathered}
$$

23. Find the optimal solution of the following TP

Destinations					
Origin	A	B	C	D	Supply
1	1	5	3	3	34
2	3	3	1	2	15
3	0	2	2	3	12
4	2	7	2	4	19
Demand	21	25	17	17	

24. a)Define Assignment problem. What you mean by effective matrix of an assignment problem. Write the mathematical representation of an assignment problem.
b)

Job				
Workers		x	y	z
	A	18	17	16
	B	15	13	14
	C	19	20	21

Formulate this assignment problem as an LPP.
25. (a) Explain the principle of dominance in game theory.
(b) Solve the game whose pay off matrix is given by

Player B
$\operatorname{Player} A\left[\begin{array}{llll}2 & 4 & 3 & 4 \\ 5 & 6 & 3 & 8 \\ 6 & 7 & 9 & 7 \\ 4 & 2 & 8 & 3\end{array}\right]$

